read.gct<-function(filename=NULL){
content <- readLines(filename)
content <- content[-1]
content <- content[-1]
col.names <- noquote(unlist(strsplit(content[1], "\t")))
col.names <- col.names[c(-1, -2)]
num.cols <- length(col.names)
content <- content[-1]
content <- content[which(content!="")]
num.lines <- length(content)
row.nam <- vector(length=num.lines, mode="character")
row.des <- vector(length=num.lines, mode="character")
m <- matrix(0, nrow=num.lines, ncol=num.cols)
for (i in 1:num.lines) {
line.list <- noquote(unlist(strsplit(content[i], "\t")))
row.nam[i] <- noquote(line.list[1])
row.des[i] <- noquote(line.list[2])
line.list <- line.list[c(-1, -2)]
for (j in 1:length(line.list)) {
m[i, j] <- as.numeric(line.list[j])
}
}
ds <- data.frame(m)
names(ds) <- col.names
row.names(ds) <- row.nam
return(ds)
}
read.cls<-function(file=NULL){
cls.cont <- readLines(file)
num.lines <- length(cls.cont)
class.list <- unlist(strsplit(cls.cont[[3]], " "))
s <- length(class.list)
t <- table(class.list)
l <- length(t)
phen <- vector(length=l, mode="character")
phen.label <- vector(length=l, mode="numeric")
class.v <- vector(length=s, mode="numeric")
for (i in 1:l) {
phen[i] <- noquote(names(t)[i])
phen.label[i] <- i - 1
}
for (i in 1:s) {
for (j in 1:l) {
if (class.list[i] == phen[j]) {
class.v[i] <- phen.label[j]
}
}
}
return(list(phen = phen, class.v = class.v))
}
GSEA.GeneRanking <- function(A, class.labels, nperm=10, reshuffling.type='sample.labels', permutation.type = 0, sigma.correction = "GeneCluster", fraction=1.0, replace=F, reverse.sign= F,random.seed=123456) {
# This function ranks the genes according to the signal to noise ratio for the actual phenotype and also random permutations and bootstrap
# subsamples of both the observed and random phenotypes. It uses matrix operations to implement the signal to noise calculation
# in stages and achieves fast execution speed. It supports two types of permutations: random (unbalanced) and balanced.
# It also supports subsampling and bootstrap by using masking and multiple-count variables. When "fraction" is set to 1 (default)
# the there is no subsampling or boostrapping and the matrix of observed signal to noise ratios will have the same value for
# all permutations. This is wasteful but allows to support all the multiple options with the same code. Notice that the second
# matrix for the null distribution will still have the values for the random permutations
# (null distribution). This mode (fraction = 1.0) is the defaults, the recommended one and the one used in the examples.
# It is also the one that has be tested more thoroughly. The resampling and boostrapping options are intersting to obtain
# smooth estimates of the observed distribution but its is left for the expert user who may want to perform some sanity
# checks before trusting the code.
#
# Inputs:
# A: Matrix of gene expression values (rows are genes, columns are samples)
# class.labels: Phenotype of class disticntion of interest. A vector of binary labels having first the 1's and then the 0's
# gene.labels: gene labels. Vector of probe ids or accession numbers for the rows of the expression matrix
# nperm: Number of random permutations/bootstraps to perform
# permutation.type: Permutation type: 0 = unbalanced, 1 = balanced. For experts only (default: 0)
# sigma.correction: Correction to the signal to noise ratio (Default = GeneCluster, a choice to support the way it was handled in a previous package)
# fraction: Subsampling fraction. Set to 1.0 (no resampling). For experts only (default: 1.0)
# replace: Resampling mode (replacement or not replacement). For experts only (default: F)
# reverse.sign: Reverse direction of gene list (default = F)
#
# Outputs:
# s2n.matrix: Matrix with random permuted or bootstraps signal to noise ratios (rows are genes, columns are permutations or bootstrap subsamplings
# obs.s2n.matrix: Matrix with observed signal to noise ratios (rows are genes, columns are boostraps subsamplings. If fraction is set to 1.0 then all the columns have the same values
# order.matrix: Matrix with the orderings that will sort the columns of the obs.s2n.matrix in decreasing s2n order
# obs.order.matrix: Matrix with the orderings that will sort the columns of the s2n.matrix in decreasing s2n order
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
#browser()
set.seed(seed=random.seed, kind = NULL)
A <- A + 0.00000001
N <- nrow(A)
Ns <- ncol(A)
subset.mask <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
order.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.order.matrix <- matrix(0, nrow = N, ncol = nperm)
s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.gene.labels <- vector(length = N, mode="character")
obs.gene.descs <- vector(length = N, mode="character")
obs.gene.symbols <- vector(length = N, mode="character")
M1 <- matrix(0, nrow = N, ncol = nperm)
M2 <- matrix(0, nrow = N, ncol = nperm)
S1 <- matrix(0, nrow = N, ncol = nperm)
S2 <- matrix(0, nrow = N, ncol = nperm)
C <- split(class.labels, class.labels)
class1.size <- length(C[[1]])
class2.size <- length(C[[2]])
class1.index <- seq(1, class1.size, 1)
class2.index <- seq(class1.size + 1, class1.size + class2.size, 1)
for (r in 1:nperm) {
class1.subset <- sample(class1.index, size = ceiling(class1.size*fraction), replace = replace)
class2.subset <- sample(class2.index, size = ceiling(class2.size*fraction), replace = replace)
class1.subset.size <- length(class1.subset)
class2.subset.size <- length(class2.subset)
subset.class1 <- rep(0, class1.size)
for (i in 1:class1.size) {
if (is.element(class1.index[i], class1.subset)) {
subset.class1[i] <- 1
}
}
subset.class2 <- rep(0, class2.size)
for (i in 1:class2.size) {
if (is.element(class2.index[i], class2.subset)) {
subset.class2[i] <- 1
}
}
subset.mask[, r] <- as.numeric(c(subset.class1, subset.class2))
fraction.class1 <- class1.size/Ns
fraction.class2 <- class2.size/Ns
if (permutation.type == 0) { # random (unbalanced) permutation
full.subset <- c(class1.subset, class2.subset)
label1.subset <- sample(full.subset, size = Ns * fraction.class1)
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
m1 <- sum(!is.na(match(label1.subset, i)))
m2 <- sum(!is.na(match(full.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
if (i <= class1.size) {
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
} else if (permutation.type == 1) { # proportional (balanced) permutation
class1.label1.subset <- sample(class1.subset, size = ceiling(class1.subset.size*fraction.class1))
class2.label1.subset <- sample(class2.subset, size = floor(class2.subset.size*fraction.class1))
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
if (i <= class1.size) {
m1 <- sum(!is.na(match(class1.label1.subset, i)))
m2 <- sum(!is.na(match(class1.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
m1 <- sum(!is.na(match(class2.label1.subset, i)))
m2 <- sum(!is.na(match(class2.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
}
}
# compute S2N for the random permutation matrix
##from each, randomly take X samples from the two class lables and get the mean as the null value of that gene's expression
P <- reshuffled.class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- reshuffled.class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
s2n.matrix <- M1/S1
if (reverse.sign == T) {
s2n.matrix <- - s2n.matrix
}
gc()
for (r in 1:nperm) {
order.matrix[, r] <- order(s2n.matrix[, r], decreasing=T)
}
# compute S2N for the "observed" permutation matrix
P <- class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
obs.s2n.matrix <- M1/S1
gc()
if (reverse.sign == T) {
obs.s2n.matrix <- - obs.s2n.matrix
}
for (r in 1:nperm) {
obs.order.matrix[,r] <- order(obs.s2n.matrix[,r], decreasing=T)
}
# browser()
#rescale correl to (-1,1]
for(k in 1:ncol(s2n.matrix)){
x<-s2n.matrix[,k]
s2n.matrix[,k]<-x/max(abs(x))
}
for(k in 1:ncol(obs.s2n.matrix)){
x<-obs.s2n.matrix[,k]
obs.s2n.matrix[,k]<-x/max(abs(x))
}
if(reshuffling.type=='gene.labels'){
for (r in 1:nperm) {
order.matrix[,r]<- sample(1:nrow(obs.s2n.matrix))
s2n.matrix[,r] <- obs.s2n.matrix[,1]
}
}
o.m=cbind(obs.order.matrix[,1],order.matrix)
s2n.m = cbind(obs.s2n.matrix[,1],s2n.matrix)
s2n.m.sort.abs<-matrix(NA, nrow = nrow(s2n.m), ncol = ncol(s2n.m))
for(i in 1:ncol(s2n.m)){
s2n.m.sort.abs[,i]<-abs(s2n.m[,i][o.m[,i]])
}
return(list(#s2n.matrix = s2n.matrix,
#obs.s2n.matrix = obs.s2n.matrix,
#order.matrix = order.matrix,
#obs.order.matrix = obs.order.matrix,
o.m=o.m,
s2n.m = s2n.m,
s2n.m.sort.abs = s2n.m.sort.abs,
reshuffled.class.labels1 = reshuffled.class.labels1))
}
GSEA.EnrichmentScore.weighted <- function(gene.list, gene.set, correl.vector = NULL,gene.labels,exp.type=1,scores=NULL,lambda=1) {
#
# Computes the weighted GSEA score of gene.set in gene.list.
# The weighted score type is the exponent of the correlation
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type is 1 or 2 it is
# necessary to input the correlation vector with the values in the same order as in the gene list.
#
# Inputs:
# gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset)
# weighted.score.type: Type of score: weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)
# correl.vector: A vector with the coorelations (e.g. signal to noise scores) corresponding to the genes in the gene list
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
# arg.ES: Location in gene.list where the peak running enrichment occurs (peak of the "mountain")
# RES: Numerical vector containing the running enrichment score for all locations in the gene list
# tag.indicator: Binary vector indicating the location of the gene sets (1's) in the gene list
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
#type = 0 equ step 1 use s2n 2 use weight
browser()
gene.labels<-correl.vector
correl.vector<-sort(correl.vector,decreasing = T)
if(exp.type == 0){
weights=1/scores
t.i=c(0)
}else if(exp.type == 1){
weights=1/scores
t.i=c(1)
}else if(exp.type == 2){
weights<-lambda*(1-scores)
t.i<-match(gene.list, gene.set, nomatch=0)
t.i[t.i>0]<-weights[t.i[t.i>0]]
}
names(weights)<-names(gene.labels[gene.set])
tag.indicator <- sign(match(gene.list, gene.set, nomatch=0)) # notice that the sign is 0 (no tag) or 1 (tag)
no.tag.indicator <- 1 - tag.indicator
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
correl.vector <- abs(correl.vector)
sum.correl.tag <- sum(tag.indicator * correl.vector^t.i)
###nomalize on gs.db
norm.tag <- 1.0/sum.correl.tag
norm.no.tag <- 1.0/Nm
RES <- cumsum(tag.indicator * correl.vector^t.i * norm.tag - no.tag.indicator * norm.no.tag)
max.ES <- max(RES)
min.ES <- min(RES)
if (max.ES > - min.ES) {
# ES <- max.ES
ES <- signif(max.ES, digits = 5)
arg.ES <- which.max(RES)
} else {
# ES <- min.ES
ES <- signif(min.ES, digits=5)
arg.ES <- which.min(RES)
}
browser()
##debug
##position_in_rank_list,gene_name,score_norm,corl,corl^score_norm
a<-names(sort(gene.labels[gene.set],decreasing = T))
names(a)<-match(a,names(sort(gene.labels,T)))
#position in rank list / gene name / correl to class label / comfident score / norm step length(corl^p*norm)
dbg<-paste(names(a),a,gene.labels[a],weights[a],correl.vector[a]^weights*norm.tag,sep='/')
#names(dbg)<-names(a)
#plot(c(0,RES,0),type='b')
##debug
gc()
return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator,dbg=dbg))
}
GSEA.EnrichmentScore.weighted.batch <- function(gene.list, gene.set, correl.vector = NULL,correl.vector.sorted=NULL,gene.labels,exp.type=1,scores=NULL,lambda=1) {
# browser()
correl.vector.sorted<-correl.vector.sorted
# for(i in 1:ncol(correl.vector)){
# correl.vector.sorted[,i]<-abs(correl.vector[,i][gene.list[,i]])
# }
if(exp.type == 0){
weights=1/scores
t.i=matrix(rep(0,length(gene.list)),ncol = ncol(gene.list))
}else if(exp.type == 1){
weights=1/scores
t.i=matrix(rep(1,length(gene.list)),ncol = ncol(gene.list))
}else if(exp.type == 2){
weights<-lambda*(1-scores)
t.i<-apply(gene.list,2,match,table=gene.set,nomatch=0)
t.i<-apply(t.i,2,function(x){x[x>0]<-weights[x[x>0]];x})
}
tag.indicator<-sign(apply(gene.list,2,match,table=gene.set,nomatch=0))
no.tag.indicator <- 1 - tag.indicator
N <- nrow(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
step<-tag.indicator * correl.vector.sorted^t.i
sum.correl.tag <- colSums(step)
###nomalize on gs.db
norm.tag <- 1.0/sum.correl.tag
norm.no.tag <- 1.0/Nm
step<-sweep(step, 2, sum.correl.tag, FUN="/")
RES <- vector(mode = "list",length(norm.tag))
for(i in 1:length(norm.tag)){
RES[[i]]<-cumsum(step[,i] - no.tag.indicator[,i] * norm.no.tag)
#names(RES[[i]])<-names(correl.vector[,i][gene.list[,i]])
}
max.ES <- sapply(RES,max)
min.ES <- sapply(RES,min)
ES=vector(mode = "numeric", length = length(max.ES))
arg.ES=vector(mode = "numeric", length = length(max.ES))
for(i in 1:length(max.ES)){
if (max.ES[i] > - min.ES[i]) {
ES[i] <- signif(max.ES[i], digits = 5)
arg.ES[i] <- which.max(RES[[i]])
} else {
ES[i] <- signif(min.ES[i], digits=5)
arg.ES[i] <- which.min(RES[[i]])
}
}
#browser()
##debug
##position_in_rank_list,gene_name,score_norm,corl,corl^score_norm
# dbg<-vector(mode = "list", length = ncol(gene.list))
# gene.labels<-rownames(correl.vector)
# for(i in 1:ncol(correl.vector)){
# #gene.labels<-correl.vector[,i]
# #names(RES[[i]])<-names(gene.labels[gene.list[,i]])
# hit<-tag.indicator[,i]==1
# gname<-gene.labels[gene.list[,i][hit]]
# position<-which(hit)
# #a<-sort(gene.labels[gene.set],decreasing = T)
# #position<-match(names(a),names(gene.labels[gene.list[,i]]))
# dbg[[i]]<-paste(position,gname,correl.vector[,i][gene.list[,i][hit]],weights[gname],step[,i][position],sep='/')
# #dbg[[i]]<-paste(position,names(a),a,weights[names(a)],step[,i][position],sep='/')
# #names(dbg[[i]])=rep(c("position_in_rank_list/gene_name/correl_to_class/comfident_score/norm_step_length(corl^p*norm)"),length(dbg[[i]]))
# }
# #position in rank list / gene name / correl to class label / comfident score / norm step length(corl^p*norm)
gene.labels<-rownames(correl.vector)
hit<-tag.indicator[,1]==1
gname<-gene.labels[gene.list[,1][hit]]
position<-which(hit)
#position in rank list / gene name / correl to class label / comfident score / norm step length(corl^p*norm)
dbg<-paste(position,gname,correl.vector[,1][gene.list[,1][hit]],weights[gname],step[,1][position],sep='/')
return(list(ES = ES, arg.ES = arg.ES, RES = RES[[1]], indicator = tag.indicator[,1],dbg=dbg))
}
plot.result<-function(A=A,O=O,rl=rl,pty=pty,nom.p.val.threshold=0.05,
output.directory='~/Desktop/tmp/2/',doc.string=NULL,topgs=10,adjust.param=0.5){
if(is.null(doc.string)){
doc.string='gsea'
}
# browser()
pdf(file=paste(output.directory, doc.string, ".global.plots", sep="", collapse=""), height = 10, width = 10)
nf <- layout(matrix(c(1,1,2,3), 2, 2, byrow=T), c(1,1), c(1,1), TRUE)
Ng<-length(rl)
Ns<-ncol(A)
obs.s2n=sort(O$s2n.m[,1],T)
N=length(obs.s2n)
location <- 1:N
max.corr <- max(obs.s2n)
min.corr <- min(obs.s2n)
phen=pty$phen
x <- plot(location, obs.s2n, ylab = "Signal to Noise Ratio (S2N)", xlab = "Gene List Location", main = "Gene List Correlation (S2N) Profile", type = "l", lwd = 2, cex = 0.9, col = 1)
for (i in seq(1, N, 20)) {
lines(c(i, i), c(0, obs.s2n[i]), lwd = 3, cex = 0.9, col = colors()[12]) # shading of correlation plot
}
x <- points(location, obs.s2n, type = "l", lwd = 2, cex = 0.9, col = 1)
lines(c(1, N), c(0, 0), lwd = 2, lty = 1, cex = 0.9, col = 1) # zero correlation horizontal line
temp <- order(abs(obs.s2n), decreasing=T)
arg.correl <- temp[N]
lines(c(arg.correl, arg.correl), c(min.corr, 0.7*max.corr), lwd = 2, lty = 3, cex = 0.9, col = 1) # zero correlation vertical line
area.bias <- signif(100*(sum(obs.s2n[1:arg.correl]) + sum(obs.s2n[arg.correl:N]))/sum(abs(obs.s2n[1:N])), digits=3)
area.phen <- ifelse(area.bias >= 0, phen[1], phen[2])
delta.string <- paste("Corr. Area Bias to \"", area.phen, "\" =", abs(area.bias), "%", sep="", collapse="")
zero.crossing.string <- paste("Zero Crossing at location ", arg.correl, " (", signif(100*arg.correl/N, digits=3), " %)")
leg.txt <- c(delta.string, zero.crossing.string)
legend(x=N/10, y=max.corr, bty="n", bg = "white", legend=leg.txt, cex = 0.9)
leg.txt <- paste("\"", phen[1], "\" ", sep="", collapse="")
text(x=1, y=-0.05*max.corr, adj = c(0, 1), labels=leg.txt, cex = 0.9)
leg.txt <- paste("\"", phen[2], "\" ", sep="", collapse="")
text(x=N, y=0.05*max.corr, adj = c(1, 0), labels=leg.txt, cex = 0.9)
###########
ES.norm=t(sapply(rl,function(x){
x$ES.premut.norm
}))
obs.ES.norm<-sapply(rl,function(x){
x$ES.obs.norm
})
obs.ES<-sapply(rl,function(x){x$ES.obs})
nperm<-ncol(O$reshuffled.class.labels1)
if(Ng>0){
phi.densities.pos <- matrix(0, nrow=512, ncol=nperm)
phi.densities.neg <- matrix(0, nrow=512, ncol=nperm)
obs.phi.densities.pos <- matrix(0, nrow=512, ncol=nperm)
obs.phi.densities.neg <- matrix(0, nrow=512, ncol=nperm)
phi.density.mean.pos <- vector(length=512, mode = "numeric")
phi.density.mean.neg <- vector(length=512, mode = "numeric")
obs.phi.density.mean.pos <- vector(length=512, mode = "numeric")
obs.phi.density.mean.neg <- vector(length=512, mode = "numeric")
phi.density.median.pos <- vector(length=512, mode = "numeric")
phi.density.median.neg <- vector(length=512, mode = "numeric")
obs.phi.density.median.pos <- vector(length=512, mode = "numeric")
obs.phi.density.median.neg <- vector(length=512, mode = "numeric")
x.coor.pos <- vector(length=512, mode = "numeric")
x.coor.neg <- vector(length=512, mode = "numeric")
#browser()
for (i in 1:nperm) {
pos.phi <- ES.norm[ES.norm[, i] >= 0, i]
if (length(pos.phi) > 2) {
temp <- density(pos.phi, adjust=adjust.param, n = 512, from=0, to=3.5)
} else {
temp <- list(x = 3.5*(seq(1, 512) - 1)/512, y = rep(0.001, 512))
}
phi.densities.pos[, i] <- temp$y
norm.factor <- sum(phi.densities.pos[, i])
phi.densities.pos[, i] <- phi.densities.pos[, i]/norm.factor
if (i == 1) {
x.coor.pos <- temp$x
}
neg.phi <- ES.norm[ES.norm[, i] < 0, i]
if (length(neg.phi) > 2) {
temp <- density(neg.phi, adjust=adjust.param, n = 512, from=-3.5, to=0)
} else {
temp <- list(x = 3.5*(seq(1, 512) - 1)/512, y = rep(0.001, 512))
}
phi.densities.neg[, i] <- temp$y
norm.factor <- sum(phi.densities.neg[, i])
phi.densities.neg[, i] <- phi.densities.neg[, i]/norm.factor
if (i == 1) {
x.coor.neg <- temp$x
}
pos.phi <- obs.ES.norm[obs.ES.norm >= 0]
if (length(pos.phi) > 2) {
temp <- density(pos.phi, adjust=adjust.param, n = 512, from=0, to=3.5)
} else {
temp <- list(x = 3.5*(seq(1, 512) - 1)/512, y = rep(0.001, 512))
}
obs.phi.densities.pos[, i] <- temp$y
norm.factor <- sum(obs.phi.densities.pos[, i])
obs.phi.densities.pos[, i] <- obs.phi.densities.pos[, i]/norm.factor
neg.phi <- obs.ES.norm[obs.ES.norm < 0]
if (length(neg.phi)> 2) {
temp <- density(neg.phi, adjust=adjust.param, n = 512, from=-3.5, to=0)
} else {
temp <- list(x = 3.5*(seq(1, 512) - 1)/512, y = rep(0.001, 512))
}
obs.phi.densities.neg[, i] <- temp$y
norm.factor <- sum(obs.phi.densities.neg[, i])
obs.phi.densities.neg[, i] <- obs.phi.densities.neg[, i]/norm.factor
}
phi.density.mean.pos <- apply(phi.densities.pos, 1, mean)
phi.density.mean.neg <- apply(phi.densities.neg, 1, mean)
obs.phi.density.mean.pos <- apply(obs.phi.densities.pos, 1, mean)
obs.phi.density.mean.neg <- apply(obs.phi.densities.neg, 1, mean)
phi.density.median.pos <- apply(phi.densities.pos, 1, median)
phi.density.median.neg <- apply(phi.densities.neg, 1, median)
obs.phi.density.median.pos <- apply(obs.phi.densities.pos, 1, median)
obs.phi.density.median.neg <- apply(obs.phi.densities.neg, 1, median)
x <- c(x.coor.neg, x.coor.pos)
x.plot.range <- range(x)
y1 <- c(phi.density.mean.neg, phi.density.mean.pos)
y2 <- c(obs.phi.density.mean.neg, obs.phi.density.mean.pos)
y.plot.range <- c(-0.3*max(c(y1, y2)), max(c(y1, y2)))
#print(c(y.plot.range, max(c(y1, y2)), max(y1), max(y2)))
plot(x, y1, xlim = x.plot.range, ylim = 1.5*y.plot.range, type = "l", lwd = 2, col = 2, xlab = "NES", ylab = "P(NES)", main = "Global Observed and Null Densities (Area Normalized)")
y1.point <- y1[seq(1, length(x), 2)]
y2.point <- y2[seq(2, length(x), 2)]
x1.point <- x[seq(1, length(x), 2)]
x2.point <- x[seq(2, length(x), 2)]
points(x, y1, type = "l", lwd = 2, col = colors()[555])
points(x, y2, type = "l", lwd = 2, col = colors()[29])
for (i in 1:Ng) {
col <- ifelse(obs.ES.norm[i] > 0, 2, 3)
lines(c(obs.ES.norm[i], obs.ES.norm[i]), c(-0.2*max(c(y1, y2)), 0), lwd = 1, lty = 1, col = 1)
}
leg.txt <- paste("Neg. ES: \"", phen[2], " \" ", sep="", collapse="")
text(x=x.plot.range[1], y=-0.25*max(c(y1, y2)), adj = c(0, 1), labels=leg.txt, cex = 0.9)
leg.txt <- paste(" Pos. ES: \"", phen[1], "\" ", sep="", collapse="")
text(x=x.plot.range[2], y=-0.25*max(c(y1, y2)), adj = c(1, 1), labels=leg.txt, cex = 0.9)
leg.txt <- c("Null Density", "Observed Density", "Observed NES values")
c.vec <- c(colors()[555], colors()[29], 1)
lty.vec <- c(1, 1, 1)
lwd.vec <- c(2, 2, 2)
legend(x=0, y=1.5*y.plot.range[2], bty="n", bg = "white", legend=leg.txt, lty = lty.vec, lwd = lwd.vec, col = c.vec, cex = 0.9)
B <- A[order(obs.s2n,decreasing = T),]
if (N > 300) {
C <- rbind(B[1:100,], rep(0, Ns), rep(0, Ns), B[(floor(N/2) - 50 + 1):(floor(N/2) + 50),], rep(0, Ns), rep(0, Ns), B[(N - 100 + 1):N,])
}
rm(B)
GSEA.HeatMapPlot(V = C, col.labels = pty$class.v, col.classes = pty$phen, main = "Heat Map for Genes in Dataset")
dev.off()
}
p.vals=sapply(rl,function(x){x$p})
tag.frac<-sapply(rl,function(x){
if(x$ES.obs>0)
sum(x$GSEA.results$indicator[1:x$GSEA.results$arg.ES[1]])/sum(x$GSEA.results$indicator)
else
sum(x$GSEA.results$indicator[x$GSEA.results$arg.ES[1]:length(x$GSEA.results$indicator)])/sum(x$GSEA.results$indicator)
})
gene.frac<-sapply(rl,function(x){
if(x$ES.obs>0)
x$GSEA.results$arg.ES[1]/length(x$GSEA.results$indicator)
else
1-x$GSEA.results$arg.ES[1]/length(x$GSEA.results$indicator)
})
#browser()
report1 <- data.frame(cbind(names(rl), Term(ONTTERM)[names(rl)],sapply(rl,function(x){sum(x$GSEA.results$indicator)}), round(obs.ES,3),
round(obs.ES.norm,3), round(p.vals,3), round(tag.frac,3), round(gene.frac,3)),row.names = NULL,stringsAsFactors = F)
names(report1) <- c("GS","DEF","SIZE", "ES", "NES", "p", "Tag %", "Gene %")
# print(report)
report2 <- report1
report.index2 <- order(obs.ES.norm, decreasing=T)
for (i in 1:Ng) {
report2[i,] <- report1[report.index2[i],]
}
report3 <- report1
report.index3 <- order(obs.ES.norm, decreasing=F)
for (i in 1:Ng) {
report3[i,] <- report1[report.index3[i],]
}
phen1.rows <- length(obs.ES.norm[obs.ES.norm >= 0])
phen2.rows <- length(obs.ES.norm[obs.ES.norm < 0])
report.phen1 <- report2[1:phen1.rows,]
report.phen2 <- report3[1:phen2.rows,]
if (output.directory != "") {
if (phen1.rows > 0) {
filename <- paste(output.directory, doc.string, ".SUMMARY.RESULTS.REPORT.", pty$phen[1],".txt", sep="", collapse="")
write.table(report.phen1, file = filename, quote=F, row.names=F, sep = "\t")
}
if (phen2.rows > 0) {
filename <- paste(output.directory, doc.string, ".SUMMARY.RESULTS.REPORT.", pty$phen[2],".txt", sep="", collapse="")
write.table(report.phen2, file = filename, quote=F, row.names=F, sep = "\t")
}
}
####plot for each gene set
if (topgs > floor(Ng/2)) {
topgs <- floor(Ng/2)
}
#browser()
result<-list()
result[['report']][[pty$phen[1]]]<-report.phen1
result[['report']][[pty$phen[2]]]<-report.phen2
#browser()
for (i in 1:Ng) {
# result[[names(rl)[i]]][['p']]<-p.vals[i]
# result[[names(rl)[i]]][['ES']]<-obs.ES[i]
# result[[names(rl)[i]]][['ES.norm']]<-obs.ES.norm[i]
# if(names(rl)[i]=='DOID:0014667'){
# browser()
# 1
# }
if (p.vals[i] <= nom.p.val.threshold ||
(is.element(i, c(order(obs.ES.norm,decreasing = T)[1:topgs], order(obs.ES.norm,decreasing = T)[(Ng - topgs + 1): Ng]))))
{
# produce report per gene set
obs.index<-which(rl[[i]]$GSEA.results$indicator==1)
gene.s2n<-obs.s2n[obs.index]
gene.names<-names(gene.s2n)
gene.RES<-rl[[i]]$GSEA.results$RES[obs.index]
loc <- match(i,order(obs.ES.norm,decreasing = T))
if (rl[[i]]$'ES.obs' >= 0) {
core.enrichment<-obs.index <= rl[[i]]$GSEA.results$arg.ES[1]
loc <- match(i,order(obs.ES.norm,decreasing = T))
phen.tag <- phen[1]
} else {
core.enrichment<-obs.index >= rl[[i]]$GSEA.results$arg.ES[1]
loc <- Ng - match(i,order(obs.ES.norm,decreasing = T)) + 1
phen.tag <- phen[2]
}
# browser()
gene.report <- data.frame(cbind(c(1:length(gene.names)), gene.names, obs.index, gene.s2n,
round(1/as.numeric(sapply(rl[[i]]$GSEA.results$dbg,function(x){strsplit(x,split = '/',fixed = T)[[1]][4]}))),
sapply(rl[[i]]$GSEA.results$dbg,function(x){strsplit(x,split = '/',fixed = T)[[1]][4]}),
sapply(rl[[i]]$GSEA.results$dbg,function(x){strsplit(x,split = '/',fixed = T)[[1]][5]}),
gene.RES, core.enrichment),row.names = NULL,stringsAsFactors = F)
names(gene.report) <- c("gene.number", "GENE","LIST LOC", "S2N","CS","expont p","STEP","RES","CORE_ENRICHMENT")
result[[phen.tag]][[names(rl)[i]]][['report']]<-gene.report
result[[phen.tag]][[names(rl)[i]]][['p']]<-p.vals[[i]]
result[[phen.tag]][[names(rl)[i]]][['ES']]<-obs.ES[[i]]
result[[phen.tag]][[names(rl)[i]]][['ES.norm']]<-obs.ES.norm[[i]]
result[[phen.tag]][[names(rl)[i]]][['ES.norm']]<-obs.ES.norm[[i]]
result[[phen.tag]][[names(rl)[i]]][['rl']]<-rl
result[[phen.tag]][[names(rl)[i]]][['obs.s2n']]<- obs.s2n
result[[phen.tag]][[names(rl)[i]]][['obs.ES']]<- obs.ES
result[[phen.tag]][[names(rl)[i]]][['N']]<- N
result[[phen.tag]][[names(rl)[i]]][['obs.index']]<- obs.index
# print(gene.report)
if (output.directory != "") {
filename <- paste(output.directory, doc.string, ".", phen.tag, ".", loc,".", names(rl)[i], ".report.", ".txt", sep="", collapse="")
write.table(gene.report, file = filename, quote=F, row.names=F, sep = "\t")
gs.filename <- paste(output.directory, doc.string, ".", phen.tag, ".", loc,".", names(rl)[i], ".plot", ".pdf", sep="", collapse="")
pdf(file=gs.filename, height = 6, width = 14)
result[[phen.tag]][[names(rl)[i]]][['plot']]<-gs.filename
}
nf <- layout(matrix(c(1,2,3), 1, 3, byrow=T), 1, c(1, 1, 1), TRUE)
ind <- 1:N
min.RES <- min(rl[[i]]$GSEA.results$RES)
max.RES <- max(rl[[i]]$GSEA.results$RES)
if (max.RES < 0.3) max.RES <- 0.3
if (min.RES > -0.3) min.RES <- -0.3
delta <- (max.RES - min.RES)*0.50
min.plot <- min.RES - 2*delta
max.plot <- max.RES
max.corr <- max(obs.s2n)
min.corr <- min(obs.s2n)
Obs.correl.vector.norm <- (obs.s2n - min.corr)/(max.corr - min.corr)*1.25*delta + min.plot
zero.corr.line <- (- min.corr/(max.corr - min.corr))*1.25*delta + min.plot
col <- ifelse(obs.ES[i] > 0, 2, 4)
# Running enrichment plot
sub.string <- paste("Number of genes: ", N, " (in list), ", length(gene.names), " (in gene set)", sep = "", collapse="")
main.string <- paste("Gene Set ", i, ":", names(rl)[i])
plot(ind, rl[[i]]$GSEA.results$RES, main = main.string, sub = sub.string, xlab = "Gene List Index", ylab = "Running Enrichment Score (RES)", xlim=c(1, N), ylim=c(min.plot, max.plot), type = "l", lwd = 2, cex = 1, col = col)
for (j in seq(1, N, 20)) {
lines(c(j, j), c(zero.corr.line, Obs.correl.vector.norm[j]), lwd = 1, cex = 1, col = colors()[12]) # shading of correlation plot
}
lines(c(1, N), c(0, 0), lwd = 1, lty = 2, cex = 1, col = 1) # zero RES line
lines(c(rl[[i]]$GSEA.results$arg.ES[1], rl[[i]]$GSEA.results$arg.ES[1]), c(min.plot, max.plot), lwd = 1, lty = 3, cex = 1, col = col) # max enrichment vertical line
for(j in obs.index){
lines(c(j, j), c(min.plot + 1.25*delta, min.plot + 1.75*delta), lwd = 1, lty = 1, cex = 1, col = 1) # enrichment tags
}
lines(ind, Obs.correl.vector.norm, type = "l", lwd = 1, cex = 1, col = 1)
lines(c(1, N), c(zero.corr.line, zero.corr.line), lwd = 1, lty = 1, cex = 1, col = 1) # zero correlation horizontal line
temp <- order(abs(obs.s2n), decreasing=T)
arg.correl <- temp[N]
lines(c(arg.correl, arg.correl), c(min.plot, max.plot), lwd = 1, lty = 3, cex = 1, col = 3) # zero crossing correlation vertical line
leg.txt <- paste("\"", phen[1], "\" ", sep="", collapse="")
text(x=1, y=min.plot, adj = c(0, 0), labels=leg.txt, cex = 1.0)
leg.txt <- paste("\"", phen[2], "\" ", sep="", collapse="")
text(x=N, y=min.plot, adj = c(1, 0), labels=leg.txt, cex = 1.0)
adjx <- ifelse(obs.ES[i] > 0, 0, 1)
leg.txt <- paste("Peak at ", rl[[i]]$GSEA.results$arg.ES[1], sep="", collapse="")
text(x=rl[[i]]$GSEA.results$arg.ES[1], y=min.plot + 1.8*delta, adj = c(adjx, 0), labels=leg.txt, cex = 1.0)
leg.txt <- paste("Zero crossing at ", arg.correl, sep="", collapse="")
text(x=arg.correl, y=min.plot + 1.95*delta, adj = c(adjx, 0), labels=leg.txt, cex = 1.0)
# nominal p-val histogram
sub.string <- paste("ES =", signif(obs.ES[i], digits = 3), " NES =", signif(obs.ES.norm[i], digits=3), " Nom. p-val=", signif(rl[[i]]$p, digits = 3))
temp <- density(rl[[i]]$ES.premut, adjust=adjust.param)
x.plot.range <- range(temp$x)
y.plot.range <- c(-0.125*max(temp$y), 1.5*max(temp$y))
plot(temp$x, temp$y, type = "l", sub = sub.string, xlim = x.plot.range, ylim = y.plot.range, lwd = 2, col = 2, main = "Gene Set Null Distribution", xlab = "ES", ylab="P(ES)")
x.loc <- which.min(abs(temp$x - obs.ES[i]))
lines(c(obs.ES[i], obs.ES[i]), c(0, temp$y[x.loc]), lwd = 2, lty = 1, cex = 1, col = 1)
lines(x.plot.range, c(0, 0), lwd = 1, lty = 1, cex = 1, col = 1)
leg.txt <- c("Gene Set Null Density", "Observed Gene Set ES value")
c.vec <- c(2, 1)
lty.vec <- c(1, 1)
lwd.vec <- c(2, 2)
legend(x=-0.2, y=y.plot.range[2], bty="n", bg = "white", legend=leg.txt, lty = lty.vec, lwd = lwd.vec, col = c.vec, cex = 1.0)
leg.txt <- paste("Neg. ES \"", phen[2], "\" ", sep="", collapse="")
text(x=x.plot.range[1], y=-0.1*max(temp$y), adj = c(0, 0), labels=leg.txt, cex = 1.0)
leg.txt <- paste(" Pos. ES: \"", phen[1], "\" ", sep="", collapse="")
text(x=x.plot.range[2], y=-0.1*max(temp$y), adj = c(1, 0), labels=leg.txt, cex = 1.0)
# create pinkogram for each gene set
pinko<-A[names(obs.s2n[obs.index]),]
##in case only one gene in the set!
if(is.null(rownames(pinko))){
pinko<-t(as.matrix(pinko))
rownames(pinko)<-names(obs.s2n[obs.index])
}
##
#browser()
GSEA.HeatMapPlot(V = pinko, row.names = rownames(pinko), col.labels = pty$class.v, col.classes = pty$phen, col.names = colnames(pinko), main =" Heat Map for Genes in Gene Set", xlab=" ", ylab=" ")
dev.off()
} # if p.vals thres
} # loop over gene sets
return(result)
}
GSEA.HeatMapPlot <- function(V, row.names = F, col.labels, col.classes, col.names = F, main = " ", xlab=" ", ylab=" ") {
#
# Plots a heatmap "pinkogram" of a gene expression matrix including phenotype vector and gene, sample and phenotype labels
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
n.rows <- length(V[,1])
n.cols <- length(V[1,])
row.mean <- apply(V, MARGIN=1, FUN=mean)
row.sd <- apply(V, MARGIN=1, FUN=sd)
row.n <- length(V[,1])
for (i in 1:n.rows) {
if (row.sd[i] == 0) {
V[i,] <- 0
} else {
V[i,] <- (V[i,] - row.mean[i])/(0.5 * row.sd[i])
}
V[i,] <- ifelse(V[i,] < -6, -6, V[i,])
V[i,] <- ifelse(V[i,] > 6, 6, V[i,])
}
mycol <- c("#0000FF", "#0000FF", "#4040FF", "#7070FF", "#8888FF", "#A9A9FF", "#D5D5FF", "#EEE5EE", "#FFAADA", "#FF9DB0", "#FF7080", "#FF5A5A", "#FF4040", "#FF0D1D", "#FF0000") # blue-pinkogram colors. The first and last are the colors to indicate the class vector (phenotype). This is the 1998-vintage, pre-gene cluster, original pinkogram color map
mid.range.V <- mean(range(V)) - 0.1
heatm <- matrix(0, nrow = n.rows + 1, ncol = n.cols)
heatm[1:n.rows,] <- V[seq(n.rows, 1, -1),]
heatm[n.rows + 1,] <- ifelse(col.labels == 0, 7, -7)
image(1:n.cols, 1:(n.rows + 1), t(heatm), col=mycol, axes=FALSE, main=main, xlab= xlab, ylab=ylab)
if (length(row.names) >= 1) {
numC <- nchar(row.names)
size.row.char <- 35/(n.rows + 5)
size.col.char <- 25/(n.cols + 5)
maxl <- floor(n.rows/1.6)
for (i in 1:n.rows) {
row.names[i] <- substr(row.names[i], 1, maxl)
}
row.names <- c(row.names[seq(n.rows, 1, -1)], "Class")
axis(2, at=1:(n.rows + 1), labels=row.names, adj= 0.5, tick=FALSE, las = 1, cex.axis=size.row.char, font.axis=2, line=-1)
}
if (length(col.names) > 1) {
axis(1, at=1:n.cols, labels=col.names, tick=FALSE, las = 3, cex.axis=size.col.char, font.axis=2, line=-1)
}
C <- split(col.labels, col.labels)
class1.size <- length(C[[1]])
class2.size <- length(C[[2]])
axis(3, at=c(floor(class1.size/2),class1.size + floor(class2.size/2)), labels=col.classes, tick=FALSE, las = 1, cex.axis=1.25, font.axis=2, line=-1)
return()
}
read.gmt<-function(file='/home/xin/Downloads/GSEA-P-R/GeneSetDatabases/HDO_o.gmt'){
l<-list()
gs.db<-readLines(file)
for (i in 1:length(gs.db)) {
temp<-strsplit(gs.db[[i]], "\t")[[1]]
l[[temp[1]]]<-temp[-c(1,2)]
}
l
}
write.gmt<-function(term2geneID,file){
def<-Term(ONTTERM)
s=''
for(i in 1:length(term2geneID)){
n<-names(term2geneID)[i]
s<-paste(s,paste(n,def[n],paste(term2geneID[[i]],collapse = '\t'),sep = '\t'),'\n',sep='')
}
sink(file)
cat(s)
sink()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.