R/normalizeChromosomes.R

Defines functions normalizeChromosomes .statmod

Documented in normalizeChromosomes

# Copyright (C) 2011 Klambauer Guenter 
# <klambauer@bioinf.jku.at>

.statmod <- function(x,na.rm=FALSE) {
	if (na.rm){
		z <- table(as.vector(x[!is.na(x)]))
		r <- names(z)[z == max(z)]
		return(as.numeric(r)[1])
	} else {
		if (any(is.na(x))){return(NA)
		} else {
			z <- table(as.vector(x))
			r <- names(z)[z == max(z)]
			return(as.numeric(r)[1])
		}
	}
} 


#' @title Normalization of NGS data. 
#' 
#' @description Normalize quantitative NGS data in order to make counts comparable over
#' samples, i.e., correcting for different library sizes or coverages. 
#' Scales each samples' reads such that the coverage is even for 
#' all samples after normalization. 
#' 
#' @param X Matrix of positive real values, where
#' columns are interpreted as samples and rows as genomic regions. An entry is
#' the read count of a sample in the genomic region. Alternatively this can be
#' a GRanges object containing the read counts as values.
#' @param chr Character vector that has as many elements as "X" has rows. The
#' vector assigns each genomic segment to a reference sequence (chromosome).
#' @param normType Type of the normalization technique. Each samples'
#' read counts are scaled such that the total number of reads are comparable across 
#' samples.
#' If this parameter is set to the value "mode", 
#' the read counts are scaled such that each samples'
#' most frequent value (the "mode") is equal after normalization. 
#' Accordingly for the other options are "mean","median","poisson", "quant", and "mode". 
#' Default = "poisson".
#' @param sizeFactor  By this parameter one can decide to how the size factors 
#' are calculated.
#' Possible choices are the the mean, median or mode coverage ("mean", "median", "mode") or any quantile 
#' ("quant").
#' @param qu Quantile of the normType if normType is set to "quant" .Real value between 0 and 1. Default = 0.25.
#' @param quSizeFactor Quantile of the sizeFactor if sizeFactor is set to "quant".
#' 0.75 corresponds to "upper quartile normalization". Real value between 0 and 1. Default = 0.75.
#' @param ploidy An integer value for each sample or each column in the read
#' count matrix. At least two samples must have a ploidy of 2. Default = "missing".
#' @examples 
#' data(cn.mops)
#' X.norm <- normalizeChromosomes(X)
#' @return A data matrix of normalized read counts with the same dimensions 
#' as the input matrix X.
#' @author Guenter Klambauer \email{klambauer@@bioinf.jku.at}
#' @export


normalizeChromosomes <- function(X, chr, normType="poisson", sizeFactor="mean", 
		qu=0.25, quSizeFactor=0.75, ploidy){
	
	if (!(normType %in% c("mean","median","poisson","mode", "quant"))){
		stop(paste("Set TO of normalization to \"mean\"",
						"\"median\", \"quant\" or \"mode\"."))
	}
	if (!(sizeFactor %in% c("mean","median","quant","mode"))){
		stop(paste("Set TO of normalization to \"mean\"",
						"\"median\", \"quant\" or \"mode\"."))
	}
	input <- X
	if (!(is.matrix(input)|any(class(input)=="GRanges"))){
		stop("Input data must be matrix or GRanges object!")
	}
	returnGRanges <- FALSE
	if(any(class(X)=="GRanges")){
		returnGRanges <- TRUE
		X <- as.matrix(mcols(X)) 	
	}	
	if (is.vector(X)){X <- matrix(X,nrow=1)}
	
	if (missing(chr) & is.matrix(input)){
		chr <- rep("undef",nrow(X))
	}
	if (missing(chr) & any(class(input)=="GRanges")){
		chr <- as.character(seqnames(input))
	}
	if (missing(ploidy)){
		ploidy <- rep(2,ncol(X))
	}
	if (any(ploidy!=as.integer(ploidy))){
		stop("Ploidy values must be integers!")
	}
	if (length(ploidy)!=ncol(X)){
		stop("Length of the ploidy vector does not match the number of", 
				"columns of the read count matrix!")
	}
	ploidy <- as.integer(ploidy)
	if (length(unique(ploidy))==1) ploidy <- rep(2, ncol(X))
	if (!length(which(ploidy>=2))){
		stop("At least two diploid samples must be contained in the data.")
	}
	ploidy[ploidy==0] <- 0.05
	Xorig <- X
	
	# Sequencing data matrix
	# vector of chromosome - length equal to rows of X
	if (length(chr)!=nrow(X)){
		stop("Length of \"chr\" must be equal to number of rows of \"X\".")}
	chr <- (as.character(chr))
	
	YY <- matrix(0,nrow=nrow(Xorig),ncol=ncol(Xorig))
	
	ploidy2flag <- FALSE
	ploidy2median <- c()
	for (pp in unique(c(2,ploidy))){
		X <- Xorig[,ploidy==pp,drop=FALSE]
		globalsizeFactors <- colSums(X,na.rm=TRUE)
		
		if (any(is.na(globalsizeFactors))) stop("NAs in readcount matrix.")
		if (any(globalsizeFactors==0)) stop("Zero columns in readcount matrix.")
		
		if (ncol(X)==1){
			Y <- X
		} else {
			
			Y <- matrix(0,nrow=nrow(X),ncol=ncol(X))
			for (l in (unique(chr))){
				chrIdx <- which(chr==l)
				Ytmp <- X[chrIdx, ,drop=FALSE]
				
				if (all(Ytmp==0)){
					Y[chrIdx, ] <- Ytmp
				} else {
					idxSG <- apply(Ytmp,1,function(x) all(x<1))
					Ytmp[idxSG, ] <- NA
					
					if ((nrow(Ytmp)-length(which(idxSG))) > 1){
						
						if (sizeFactor=="mean"){
							sizeFactors <- colMeans(Ytmp,na.rm=TRUE)
						} else if (sizeFactor=="median" | normType=="poisson"){
							sizeFactors <- apply(Ytmp,2,median,na.rm=TRUE)
						} else if (sizeFactor=="quant"){
							sizeFactors <- apply(Ytmp,2,quantile,probs=quSizeFactor,na.rm=TRUE)
						} else if (sizeFactor=="mode"){
							sizeFactors <- apply(Ytmp,2,function(x) .statmod(x[x!=0],na.rm=TRUE) )
						}
						
						if (any(is.na(sizeFactors))){
							warning(paste("Normalization failed for reference sequence ",l,
											". Using global sizeFactors!"))
							sizeFactors <- globalsizeFactors
						}
						
						if (any(sizeFactors==0)){
							stop(paste("Some normalization factors are zero!",
											"Remove samples or chromosomes for which the average read count is zero,",
											"e.g. chromosome Y."))
						}
						
						
						if (normType=="mean"){
							correctwiththis <-  mean(sizeFactors,na.rm=TRUE)/sizeFactors
						} else if (normType=="median"){
							correctwiththis <-  median(sizeFactors,na.rm=TRUE)/sizeFactors
						} else if (normType=="quant"){
							correctwiththis <-  quantile(sizeFactors,probs=qu,na.rm=TRUE)/sizeFactors
						} else if (normType=="mode"){
							asm <- .statmod(Ytmp[Ytmp!=0],na.rm=TRUE)
							correctwiththis <- asm/sizeFactors
						} else if (normType=="poisson"){
							correctwiththis <-  mean(sizeFactors,na.rm=TRUE)/sizeFactors
							#YYtmp <- t(t(Ytmp)*correctwiththis)
							YYtmp <- Ytmp %*% diag(correctwiththis)
							v2m <- apply(YYtmp,1,var)/rowMeans(YYtmp)
							uut <- quantile(v2m,probs=0.95,na.rm=TRUE)
							dd <- density(v2m,na.rm=TRUE,from=0,
									to=uut,n=uut*100)
							#mv2m <- median(v2m,na.rm=TRUE)
							mv2m <- dd$x[which.max(dd$y)]
							if (is.finite(mv2m)) {correctwiththis <- correctwiththis*1/mv2m}
						}
						#browser()
						
					} else {
						warning(paste("Normalization for reference sequence ",l,"not", 
										"applicable, because of low number of segments"))
						correctwiththis <- rep(1,ncol(X))
					}
					
					if (any(!is.finite(correctwiththis))){
						warning(paste("Normalization for reference sequence ",l,"not", 
										"applicable, because at least one sample has zero",
										"reads."))
						correctwiththis <- rep(1,ncol(X))
					}
					
					Ytmp <- Ytmp %*% diag(correctwiththis)
					Ytmp[idxSG, ] <- 0
					
					Y[chrIdx, ] <- Ytmp
				}
			}
		} # over chr
		
		if (!ploidy2flag){
			ploidy2flag <- TRUE
			ploidy2median <- median(Y[!idxSG, ],na.rm=TRUE)
		}
		
		if (pp!=2){
			mm <- median(Y[!idxSG, ],na.rm=TRUE)
			if (ploidy2median==0 & mm==0){
				YY[,ploidy==pp] <- Y*pp/2
			} else {
				YY[,ploidy==pp] <- Y*ploidy2median/mm*pp/2
			}
		} else{
			YY[,ploidy==pp] <- Y
		}
	}
	
	rownames(YY) <- rownames(Xorig)
	colnames(YY) <- colnames(Xorig)
	
	if (returnGRanges){
		mcols(input) <- YY
		return(input)
	} else {
		return(YY)
	}
}
gpovysil/cn.mops documentation built on Aug. 7, 2024, 12:45 p.m.