#' export_for_iSEE
#'
#' Combine data from a typical DESeq2 run
#'
#' Combines the DESeqDataSet input and DESeqResults into a SummarizedExperiment
#' object, which can be readily explored with iSEE.
#'
#' A typical usage would be after running the DESeq2 pipeline and/or after exploring
#' the functional enrichment results with [GeneTonic()]
#'
#' @param dds A \code{\link{DESeqDataSet}} object.
#' @param res_de A \code{\link{DESeqResults}} object.
#' @param gtl A `GeneTonic`-list object, containing in its slots the arguments
#' specified above: `dds`, `res_de`, `res_enrich`, and `annotation_obj` - the names
#' of the list _must_ be specified following the content they are expecting
#'
#' @return A `SummarizedExperiment` object, with raw counts, normalized counts, and
#' variance-stabilizing transformed counts in the assay slots; and with colData
#' and rowData extracted from the corresponding input parameters - mainly the
#' results for differential expression analysis.
#'
#' @export
#'
#' @examples
#' library("macrophage")
#' library("DESeq2")
#'
#' # dds object
#' data("gse", package = "macrophage")
#' dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
#' rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
#' dds_macrophage <- estimateSizeFactors(dds_macrophage)
#'
#' # res object
#' data(res_de_macrophage, package = "GeneTonic")
#' res_de <- res_macrophage_IFNg_vs_naive
#'
#' # now everything is in place to launch the app
#' # dds_macrophage <- DESeq2::DESeq(dds_macrophage)
#' se_macrophage <- export_for_iSEE(dds_macrophage, res_de)
#' # iSEE(se_macrophage)
export_for_iSEE <- function(dds,
res_de,
gtl = NULL) {
if (!is.null(gtl)) {
checkup_gtl(gtl)
dds <- gtl$dds
res_de <- gtl$res_de
res_enrich <- gtl$res_enrich
annotation_obj <- gtl$annotation_obj
}
# sanity checks on the objects
if (length(setdiff(rownames(dds), rownames(res_de))) != 0 |
length(setdiff(rownames(res_de), rownames(dds))) != 0) {
message(
"Attempting to combine a dds and a res_de object where not all",
"identifiers are shared. Subsetting to the intersection of these..."
)
}
keep <- intersect(rownames(dds), rownames(res_de))
dds <- dds[keep, ]
res_de <- res_de[keep, ]
# dds to vst
vst <- vst(dds)
# initialize the container
se <- SummarizedExperiment(
assays = list(
counts = counts(dds),
normcounts = counts(dds, normalized = TRUE),
vst_counts = assay(vst)
)
)
# adding colData, taken directly from the DESeqDataSet object
colData(se) <- colData(dds)
# extract contrast info
this_contrast <- sub(".*p-value: (.*)", "\\1", mcols(res_de, use.names = TRUE)["pvalue", "description"])
# getting the rowData from the dds itself
rdd <- rowData(dds)
# modifying in advance the DESeqResults object
res_de$log10_baseMean <- log10(res_de$baseMean)
res_de$log10_pvalue <- -log10(res_de$pvalue)
if ("dispersion" %in% colnames(rdd)) {
# and for the rowData
rdd$log10_dispersion <- log10(rdd$dispersion)
}
# adding rowData to se
rowData(se)[[paste0("DESeq2_", gsub(" ", "_", this_contrast))]] <- res_de
# merging in the existing rowData slot
rowData(se) <- cbind(rowData(se), rdd)
return(se)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.