gs_radar | R Documentation |
Radar (spider) plot for gene sets, either for one or more results from functional enrichment analysis.
gs_radar(
res_enrich,
res_enrich2 = NULL,
n_gs = 20,
p_value_column = "gs_pvalue"
)
gs_spider(
res_enrich,
res_enrich2 = NULL,
n_gs = 20,
p_value_column = "gs_pvalue"
)
res_enrich |
A |
res_enrich2 |
Analogous to |
n_gs |
Integer value, corresponding to the maximal number of gene sets to be displayed |
p_value_column |
Character string, specifying the column of |
A plotly
object
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
gs_radar(res_enrich = res_enrich)
# or using the alias...
gs_spider(res_enrich = res_enrich)
# with more than one set
res_enrich2 <- res_enrich[1:60, ]
set.seed(42)
shuffled_ones <- sample(seq_len(60)) # to generate permuted p-values
res_enrich2$gs_pvalue <- res_enrich2$gs_pvalue[shuffled_ones]
# ideally, I would also permute the z scores and aggregated scores
gs_radar(
res_enrich = res_enrich,
res_enrich2 = res_enrich2
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.