gs_scoresheat | R Documentation |
Plots a matrix of geneset Z scores, across all samples
gs_scoresheat(
mat,
n_gs = nrow(mat),
gs_ids = NULL,
clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean",
cluster_rows = TRUE,
cluster_cols = TRUE
)
mat |
A matrix, e.g. returned by the |
n_gs |
Integer value, corresponding to the maximal number of gene sets to be displayed. |
gs_ids |
Character vector, containing a subset of |
clustering_distance_rows |
Character, a distance measure used in clustering rows |
clustering_distance_cols |
Character, a distance measure used in clustering columns |
cluster_rows |
Logical, determining if rows should be clustered |
cluster_cols |
Logical, determining if columns should be clustered |
A ggplot
object
gs_scores()
computes the scores plotted by this function
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
vst_macrophage <- vst(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
scores_mat <- gs_scores(
vst_macrophage,
res_de,
res_enrich[1:30, ],
anno_df
)
gs_scoresheat(scores_mat,
n_gs = 30
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.