gs_scores | R Documentation |
Compute gene set scores for each sample, by transforming the gene-wise change to a geneset-wise change
gs_scores(se, res_de, res_enrich, annotation_obj = NULL, gtl = NULL)
se |
A |
res_de |
A |
res_enrich |
A |
annotation_obj |
A |
gtl |
A |
A matrix with the geneset Z scores, e.g. to be plotted with gs_scoresheat()
gs_scoresheat()
plots these scores
library("macrophage")
library("DESeq2")
library("org.Hs.eg.db")
library("AnnotationDbi")
# dds object
data("gse", package = "macrophage")
dds_macrophage <- DESeqDataSet(gse, design = ~ line + condition)
rownames(dds_macrophage) <- substr(rownames(dds_macrophage), 1, 15)
dds_macrophage <- estimateSizeFactors(dds_macrophage)
vst_macrophage <- vst(dds_macrophage)
# annotation object
anno_df <- data.frame(
gene_id = rownames(dds_macrophage),
gene_name = mapIds(org.Hs.eg.db,
keys = rownames(dds_macrophage),
column = "SYMBOL",
keytype = "ENSEMBL"
),
stringsAsFactors = FALSE,
row.names = rownames(dds_macrophage)
)
# res object
data(res_de_macrophage, package = "GeneTonic")
res_de <- res_macrophage_IFNg_vs_naive
# res_enrich object
data(res_enrich_macrophage, package = "GeneTonic")
res_enrich <- shake_topGOtableResult(topgoDE_macrophage_IFNg_vs_naive)
res_enrich <- get_aggrscores(res_enrich, res_de, anno_df)
scores_mat <- gs_scores(
vst_macrophage,
res_de,
res_enrich[1:50, ],
anno_df
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.