#' Create correlation matrix heatmaps.
#'
#' @inheritParams doc_function
#' @param mode \strong{\code{\link[base]{character}}} | Different types of correlation matrices can be computed. Right now, the only possible value is "hvg", standing for Highly Variable Genes. The sample is subset for the HVG and the data is re-scaled. Scale data is used for the correlation.
#' @param cluster \strong{\code{\link[base]{logical}}} | Whether to cluster the elements in the heatmap or not.
#' @param remove.diagonal \strong{\code{\link[base]{logical}}} | Whether to convert diagnoal to NA. Normally this value would be 1, heavily shifting the color scale.
#' @return A ggplot2 object.
#' @export
#'
#' @example /man/examples/examples_do_CorrelationHeatmap.R
do_CorrelationHeatmap <- function(sample = NULL,
input_gene_list = NULL,
cluster = TRUE,
remove.diagonal = TRUE,
mode = "hvg",
values.show = FALSE,
values.threshold = NULL,
values.size = 3,
values.round = 1,
assay = NULL,
group.by = NULL,
legend.title = "Pearson coef.",
enforce_symmetry = ifelse(mode == "hvg", TRUE, FALSE),
font.size = 14,
font.type = "sans",
na.value = "grey75",
legend.width = 1,
legend.length = 20,
legend.framewidth = 0.5,
legend.tickwidth = 0.5,
legend.framecolor = "grey50",
legend.tickcolor = "white",
legend.type = "colorbar",
legend.position = "bottom",
min.cutoff = NA,
max.cutoff = NA,
number.breaks = 5,
plot.title = NULL,
plot.subtitle = NULL,
plot.caption = NULL,
diverging.palette = "RdBu",
diverging.direction = -1,
use_viridis = FALSE,
viridis.palette = "G",
viridis.direction = -1,
sequential.palette = "YlGnBu",
sequential.direction = 1,
axis.text.x.angle = 45,
grid.color = "white",
border.color = "black",
plot.title.face = "bold",
plot.subtitle.face = "plain",
plot.caption.face = "italic",
axis.title.face = "bold",
axis.text.face = "plain",
legend.title.face = "bold",
legend.text.face = "plain"){
# Add lengthy error messages.
withr::local_options(.new = list("warning.length" = 8170))
check_suggests(function_name = "do_CorrelationHeatmap")
`%>%` <- magrittr::`%>%`
# Check logical parameters.
logical_list <- list("enforce_symmetry" = enforce_symmetry,
"cluster" = cluster,
"remove.diagonal" = remove.diagonal,
"values.show" = values.show)
check_type(parameters = logical_list, required_type = "logical", test_function = is.logical)
# Check numeric parameters.
numeric_list <- list("min.cutoff" = min.cutoff,
"max.cutoff" = max.cutoff,
"number.breaks" = number.breaks,
"legend.width" = legend.width,
"legend.length" = legend.length,
"legend.tickwidth" = legend.tickwidth,
"legend.framewidth" = legend.framewidth,
"font.size" = font.size,
"axis.text.x.angle" = axis.text.x.angle,
"sequential.direction" = sequential.direction,
"viridis.direction" = viridis.direction,
"diverging.direction" = diverging.direction,
"values.threshold" = values.threshold,
"values.size" = values.size,
"values.round" = values.round)
check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric)
# Check character parameters.
character_list <- list("mode" = mode,
"assay" = assay,
"legend.title" = legend.title,
"group.by" = group.by,
"na.value" = na.value,
"legend.framecolor" = legend.framecolor,
"legend.tickcolor" = legend.tickcolor,
"legend.type" = legend.type,
"plot.title" = plot.title,
"plot.subtitle" = plot.subtitle,
"plot.caption" = plot.caption,
"font.type" = font.type,
"diverging.palette" = diverging.palette,
"sequential.palette" = sequential.palette,
"viridis.palette" = viridis.palette,
"grid.color" = grid.color,
"border.color" = border.color,
"plot.title.face" = plot.title.face,
"plot.subtitle.face" = plot.subtitle.face,
"plot.caption.face" = plot.caption.face,
"axis.title.face" = axis.title.face,
"axis.text.face" = axis.text.face,
"legend.title.face" = legend.title.face,
"legend.text.face" = legend.text.face)
check_type(parameters = character_list, required_type = "character", test_function = is.character)
check_colors(na.value, parameter_name = "na.value")
check_colors(legend.framecolor, parameter_name = "legend.framecolor")
check_colors(legend.tickcolor, parameter_name = "legend.tickcolor")
check_colors(grid.color, parameter_name = "grid.color")
check_colors(border.color, parameter_name = "border.color")
check_parameters(parameter = legend.position, parameter_name = "legend.position")
check_parameters(parameter = font.type, parameter_name = "font.type")
check_parameters(parameter = legend.type, parameter_name = "legend.type")
check_parameters(parameter = number.breaks, parameter_name = "number.breaks")
check_parameters(parameter = diverging.palette, parameter_name = "diverging.palette")
check_parameters(parameter = sequential.palette, parameter_name = "sequential.palette")
check_parameters(plot.title.face, parameter_name = "plot.title.face")
check_parameters(plot.subtitle.face, parameter_name = "plot.subtitle.face")
check_parameters(plot.caption.face, parameter_name = "plot.caption.face")
check_parameters(axis.title.face, parameter_name = "axis.title.face")
check_parameters(axis.text.face, parameter_name = "axis.text.face")
check_parameters(legend.title.face, parameter_name = "legend.title.face")
check_parameters(legend.text.face, parameter_name = "legend.text.face")
check_parameters(viridis.direction, parameter_name = "viridis.direction")
check_parameters(sequential.direction, parameter_name = "sequential.direction")
check_parameters(diverging.direction, parameter_name = "diverging.direction")
if (isTRUE(enforce_symmetry)){
colors.gradient <- compute_continuous_palette(name = diverging.palette,
use_viridis = FALSE,
direction = diverging.direction,
enforce_symmetry = enforce_symmetry)
} else {
colors.gradient <- compute_continuous_palette(name = ifelse(isTRUE(use_viridis), viridis.palette, sequential.palette),
use_viridis = use_viridis,
direction = ifelse(isTRUE(use_viridis), viridis.direction, sequential.direction),
enforce_symmetry = enforce_symmetry)
}
if (base::isTRUE(values.show)){
assertthat::assert_that(is.numeric(values.threshold),
msg = paste0(add_cross(), crayon_body("Please provide a value to "),
crayon_key("values.threshold"),
crayon_body(" when setting "),
crayon_key("values.show = TRUE"),
crayon_body(".")))
}
if (mode == "hvg"){
# Check if the sample provided is a Seurat object.
check_Seurat(sample = sample)
out <- check_and_set_assay(sample = sample, assay = assay)
sample <- out[["sample"]]
assay <- out[["assay"]]
# Check group.by.
out <- check_group_by(sample = sample,
group.by = group.by,
is.heatmap = TRUE)
sample <- out[["sample"]]
group.by <- out[["group.by"]]
# Generate a correlation matrix of the HVG.
variable_genes <- Seurat::VariableFeatures(sample)
# Sort them in order (for ATAC experiments).
suppressWarnings({
genes <- rownames(SeuratObject::GetAssayData(object = sample,
assay = assay,
slot = "data"))
genes <- data.frame("Genes" = genes) %>%
tibble::rowid_to_column(var = "Position") %>%
tibble::as_tibble() %>%
dplyr::filter(.data$Genes %in% variable_genes) %>%
dplyr::arrange(.data$Position) %>%
dplyr::pull(.data$Genes)
})
# Subset sample according to the variable genes.
sample <- sample[genes, ]
# Scale the data
sample <- Seurat::ScaleData(sample, features = genes, verbose = FALSE)
# Retrieve correlation matrix.
suppressWarnings({
out <- sample@meta.data %>%
dplyr::select(dplyr::all_of(c(group.by))) %>%
tibble::rownames_to_column(var = "cell") %>%
dplyr::left_join(y = {SeuratObject::GetAssayData(object = sample,
assay = assay,
slot = "scale.data") %>%
as.matrix() %>%
t() %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "cell") %>%
tidyr::pivot_longer(-"cell",
names_to = "gene",
values_to = "expression")},
by = "cell") %>%
dplyr::select(-"cell") %>%
dplyr::group_by(.data[[group.by]], .data[["gene"]]) %>%
dplyr::summarise(mean_expression = mean(.data[["expression"]])) %>%
tidyr::pivot_wider(names_from = dplyr::all_of(c(group.by)),
values_from = "mean_expression") %>%
as.data.frame() %>%
tibble::column_to_rownames(var = "gene") %>%
as.matrix() %>%
stats::cor() %>%
round(digits = 2)
})
# Compute hclust.
if (isTRUE(cluster)){
order <- rownames(out)[stats::hclust(stats::dist(out, method = "euclidean"), method = "ward.D")$order]
} else {
order <- rownames(out)
}
out.long <- out %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "x") %>%
tibble::as_tibble() %>%
tidyr::pivot_longer(cols = -"x",
names_to = "y",
values_to = "score") %>%
dplyr::mutate("x" = factor(.data$x, levels = order),
"y" = factor(.data$y, levels = rev(order))) %>%
dplyr::mutate("score" = ifelse(as.character(.data$x) == as.character(.data$y), ifelse(isTRUE(remove.diagonal), NA, .data$score), .data$score))
limits <- c(min(out.long$score, na.rm = TRUE),
max(out.long$score, na.rm = TRUE))
# Compute scale limits, breaks, etc.
scale.setup <- compute_scales(sample = sample,
feature = " ",
assay = "SCT",
reduction = NULL,
slot = "scale.data",
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = enforce_symmetry,
from_data = TRUE,
limits.use = limits)
# Modify according to min.cutoff and max.cutoff.
if (!is.na(min.cutoff)){
out.long <- out.long %>%
dplyr::mutate("score" = ifelse(.data$score < min.cutoff, min.cutoff, .data$score))
}
if (!is.na(max.cutoff)){
out.long <- out.long %>%
dplyr::mutate("score" = ifelse(.data$score > max.cutoff, max.cutoff, .data$score))
}
p <- ggplot2::ggplot(out.long,
mapping = ggplot2::aes(x = .data$x,
y = .data$y,
fill = .data$score)) +
ggplot2::geom_tile(color = grid.color, linewidth = 0.5)
if (base::isTRUE(values.show)){
p <- p +
ggplot2::geom_text(ggplot2::aes(label = round(.data$score, values.round),
color = ifelse(abs(.data$score) > values.threshold, "white", "black")),
size = values.size) +
ggplot2::scale_color_identity()
}
p <- p +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$y))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$x)))) +
ggplot2::scale_fill_gradientn(colors = colors.gradient,
na.value = na.value,
name = legend.title,
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits) +
ggplot2::coord_equal() +
ggplot2::xlab(NULL) +
ggplot2::ylab(NULL) +
ggplot2::labs(title = plot.title,
subtitle = plot.subtitle,
caption = plot.caption)
p <- modify_continuous_legend(p = p,
legend.title = legend.title,
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = legend.framewidth,
legend.tickwidth = legend.tickwidth)
p <- p +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = ggplot2::element_line(color = "black"),
axis.ticks.x.top = ggplot2::element_blank(),
axis.ticks.y.left = ggplot2::element_blank(),
axis.ticks.y.right = ggplot2::element_line(color = "black"),
axis.text.y.left = ggplot2::element_blank(),
axis.text.y.right = ggplot2::element_text(color = "black",
face = axis.text.face),
axis.text.x.top = ggplot2::element_blank(),
axis.text.x.bottom = ggplot2::element_text(color = "black",
face = axis.text.face,
angle = get_axis_parameters(angle = axis.text.x.angle, flip = FALSE)[["angle"]],
hjust = get_axis_parameters(angle = axis.text.x.angle, flip = FALSE)[["hjust"]],
vjust = get_axis_parameters(angle = axis.text.x.angle, flip = FALSE)[["vjust"]]),
axis.title.x.bottom = ggplot2::element_blank(),
axis.title.x.top = ggplot2::element_text(color = "black",
face = axis.title.face),
axis.title.y.right = ggplot2::element_blank(),
axis.title.y.left = ggplot2::element_text(color = "black",
face = axis.title.face),
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = font.type),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 0, r = 10, b = 0, l = 40),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
legend.position = legend.position,
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"))
} else if (mode == "jaccard"){
# Compute jaccard indext.
jaccard <- function(set_1, set_2) {
# Compute intersection.
intersection <- length(dplyr::intersect(set_1, set_2))
# Compute the union.
union <- length(set_1) + length(set_2) - intersection
# Jaccard index is just the number of shared genes divided by the number of non-shared genes.
jaccard_index <- intersection / union
return(jaccard_index)
}
jaccard_scores <- list()
for(listname_store in names(input_gene_list)){
vector_scores <- NULL
for(listname in names(input_gene_list)){
scores <- jaccard(set_1 = input_gene_list[[listname_store]], set_2 = input_gene_list[[listname]])
names(scores) <- listname
vector_scores <- append(vector_scores, round(scores, 2))
}
jaccard_scores[[listname_store]] <- vector_scores
}
jaccard_matrix <- as.matrix(as.data.frame(jaccard_scores))
colnames(jaccard_matrix) <- rownames(jaccard_matrix)
if (isTRUE(cluster)){
order <- rownames(jaccard_matrix)[stats::hclust(stats::dist(jaccard_matrix, method = "euclidean"), method = "ward.D")$order]
} else {
order <- rownames(jaccard_matrix)
}
jaccard_matrix <- jaccard_matrix[order, order]
if (isTRUE(remove.diagonal)){
jaccard_matrix[jaccard_matrix == 1] <- NA
}
data <- jaccard_matrix %>%
as.data.frame() %>%
tibble::rownames_to_column(var = "x") %>%
tidyr::pivot_longer(cols = -dplyr::all_of("x"),
names_to = "y",
values_to = "score") %>%
dplyr::mutate("x" = factor(.data$x, levels = order),
"y" = factor(.data$y, levels = rev(order)))
limits <- c(min(data$score, na.rm = TRUE),
max(data$score, na.rm = TRUE))
assertthat::assert_that(limits[[1]] != limits[[2]],
msg = paste0(add_cross(), crayon_body("The "),
crayon_key(" jaccard similarity matrix "),
crayon_body(" has no different values. Try another gene set.")))
scale.setup <- compute_scales(sample = NULL,
feature = NULL,
assay = NULL,
reduction = NULL,
slot = NULL,
number.breaks = number.breaks,
min.cutoff = min.cutoff,
max.cutoff = max.cutoff,
flavor = "Seurat",
enforce_symmetry = FALSE,
from_data = TRUE,
limits.use = limits)
# Modify according to min.cutoff and max.cutoff.
if (!is.na(min.cutoff)){
data <- data %>%
dplyr::mutate("score" = ifelse(.data$score < min.cutoff, min.cutoff, .data$score))
}
if (!is.na(max.cutoff)){
data <- data %>%
dplyr::mutate("score" = ifelse(.data$score > max.cutoff, max.cutoff, .data$score))
}
p <- data %>%
ggplot2::ggplot(mapping = ggplot2::aes(x = .data$x,
y = .data$y,
fill = .data$score)) +
ggplot2::geom_tile(color = grid.color, linewidth = 0.5, na.rm = TRUE) +
ggplot2::geom_text(ggplot2::aes(label = round(.data$score, values.round),
color = ifelse(.data$score > values.threshold, "white", "black")),
size = values.size) +
ggplot2::scale_color_identity() +
ggplot2::scale_y_discrete(expand = c(0, 0)) +
ggplot2::scale_x_discrete(expand = c(0, 0),
position = "top") +
ggplot2::coord_equal() +
ggplot2::guides(y.sec = guide_axis_label_trans(~paste0(levels(.data$y))),
x.sec = guide_axis_label_trans(~paste0(levels(.data$x))))
axis.parameters <- handle_axis(flip = FALSE,
group.by = "A",
group = "A",
counter = 1,
axis.text.x.angle = axis.text.x.angle,
plot.title.face = plot.title.face,
plot.subtitle.face = plot.subtitle.face,
plot.caption.face = plot.caption.face,
axis.title.face = axis.title.face,
axis.text.face = axis.text.face,
legend.title.face = legend.title.face,
legend.text.face = legend.text.face)
p <- p +
ggplot2::scale_fill_gradientn(colors = colors.gradient,
na.value = na.value,
name = legend.title,
breaks = scale.setup$breaks,
labels = scale.setup$labels,
limits = scale.setup$limits)
p <- modify_continuous_legend(p = p,
legend.title = "Jaccard score",
legend.aes = "fill",
legend.type = legend.type,
legend.position = legend.position,
legend.length = legend.length,
legend.width = legend.width,
legend.framecolor = legend.framecolor,
legend.tickcolor = legend.tickcolor,
legend.framewidth = 0.5,
legend.tickwidth = 0.5)
p <- p +
ggplot2::xlab("") +
ggplot2::ylab("") +
ggplot2::theme_minimal(base_size = font.size) +
ggplot2::theme(axis.ticks.x.bottom = axis.parameters$axis.ticks.x.bottom,
axis.ticks.x.top = axis.parameters$axis.ticks.x.top,
axis.ticks.y.left = axis.parameters$axis.ticks.y.left,
axis.ticks.y.right = axis.parameters$axis.ticks.y.right,
axis.text.y.left = axis.parameters$axis.text.y.left,
axis.text.y.right = axis.parameters$axis.text.y.right,
axis.text.x.top = axis.parameters$axis.text.x.top,
axis.text.x.bottom = axis.parameters$axis.text.x.bottom,
axis.title.x.bottom = axis.parameters$axis.title.x.bottom,
axis.title.x.top = axis.parameters$axis.title.x.top,
axis.title.y.right = axis.parameters$axis.title.y.right,
axis.title.y.left = axis.parameters$axis.title.y.left,
strip.background = axis.parameters$strip.background,
strip.clip = axis.parameters$strip.clip,
strip.text = axis.parameters$strip.text,
legend.position = "bottom",
axis.line = ggplot2::element_blank(),
plot.title = ggplot2::element_text(face = plot.title.face, hjust = 0),
plot.subtitle = ggplot2::element_text(face = plot.subtitle.face, hjust = 0),
plot.caption = ggplot2::element_text(face = plot.caption.face, hjust = 1),
plot.title.position = "plot",
panel.grid = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_line(color = "white", linewidth = 1),
text = ggplot2::element_text(family = "sans"),
plot.caption.position = "plot",
legend.text = ggplot2::element_text(face = legend.text.face),
legend.title = ggplot2::element_text(face = legend.title.face),
legend.justification = "center",
plot.margin = ggplot2::margin(t = 10,
r = 0,
b = 0,
l = 40),
panel.border = ggplot2::element_rect(fill = NA, color = border.color, linewidth = 1),
panel.grid.major = ggplot2::element_blank(),
plot.background = ggplot2::element_rect(fill = "white", color = "white"),
panel.background = ggplot2::element_rect(fill = "white", color = "white"),
legend.background = ggplot2::element_rect(fill = "white", color = "white"))
}
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.