#' A simple PCA plot.
#'
#' @param expr_data_frame A data frame containing ID and quantification value.
#' @param main The main title of plot.
#' @param point_cex a numerical value for point size.
#' @param point_col a color code or name for point color.
#' @param point_type point type, see points.
#' @param text_cex a numerical value for text size.
#' @export
#' @return A simple PCA plot.
#' @author Dongdong Zhan and Mengsha Tong
#'
#' @examples
#' \dontrun{
#' ftp_url <- "https://github.com/ecnuzdd/PhosMap_datasets/function_demo_data/visualization_with_simple_pca.RData"
#' load_data <- load_data_with_ftp(ftp_url, 'RData')
#' writeBin(load_data, "visualization_with_simple_pca.RData")
#' load("visualization_with_simple_pca.RData")
#'
#' visualization_with_simple_pca(expr_df, main = 'Simple PCA',
#' point_cex = 2, point_col = 'firebrick',
#' point_type = 20, text_cex = 1
#' )
#' }
visualization_with_simple_pca <- function(expr_data_frame,
main = 'Simple PCA',
point_cex = 2, point_col = 'firebrick', point_type = 20,
text_cex = 1){
requireNamespace('stats')
requireNamespace('graphics')
expr_ID <- as.vector(expr_data_frame[,1])
expr_Valule <- log2(expr_data_frame[,-1]) # have to log
testDat <- t(expr_Valule) # row -> sample, col -> variable
pca <- stats::prcomp(((testDat)), center = TRUE, scale = TRUE)
stats::screeplot(pca, type="lines")
importance <- summary(pca)$importance
PC1 <- importance[2,1]
PC2 <- importance[2,2]
PC1 <- round(PC1, 4)*100
PC2 <- round(PC2, 4)*100
pca_predict <- stats::predict(pca)
pca_predict_2d <- pca_predict[,c(1,2)]
ExpNames <- colnames(expr_Valule)
rownames(pca_predict_2d) <- ExpNames
#background
xlim <- c(floor(min(pca_predict_2d[,1]))-5, ceiling(max(pca_predict_2d[,1]))+5)
ylim <- c(floor(min(pca_predict_2d[,2]))-5, ceiling(max(pca_predict_2d[,2]))+5)
xlab <- paste("PC1 (", PC1, "%)", sep = "")
ylab <- paste("PC2 (", PC2, "%)", sep = "")
graphics::plot(pca_predict_2d, type = "n", xlim = xlim, ylim = ylim, lwd = 2, xlab = xlab, ylab = ylab, main = main)
graphics::points(pca_predict_2d, pch = point_type, col = point_col, cex = point_cex)
graphics::text(pca_predict_2d, ExpNames, pos = 4, cex = text_cex)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.