View source: R/norm_based_on_proteomics_maxquant.R
norm_based_on_proteomics_maxquant | R Documentation |
Normalizaiton for phosphoproteomics data from MaxQuant based on proteomics data
norm_based_on_proteomics_maxquant( summary_phos_norm, proteomics_data, experiment_code_file_path, proteomics_experiment_file_path, intensity_type = "Intensity", min_unique_peptide = 1, max_na_num = 2, norm_method = "global", impute_method = "minimum/10" )
summary_phos_norm |
A data frame containing information required for all analysis. |
proteomics_data |
A data frame of proteinGroups.txt. |
experiment_code_file_path |
Experiment code file path for phosphoproteomics. |
proteomics_experiment_file_path |
Experiment code file path for proteomics. |
intensity_type |
Intensity type. The default is 'Intensity' and the options are 'iBAQ' and 'LFQ.intensity',depending on proteinGroups.txt. |
min_unique_peptide |
Threshold for MaxQuant unique peptide[proteinGroups.txt]. The default is 1. |
max_na_num |
Threshold for the number of missing values[proteinGroups.txt]. The default is 2. |
norm_method |
Normalizaiton method[proteinGroups.txt]. The default is 'global' and the options are 'global' and 'median'. |
impute_method |
Imputation method[proteinGroups.txt]. The default is 'minimum/10',the options are '0', 'minimum' and 'minimum/10'. |
A result list. Elements are a data frame containing information required for all analysis and a pre-processed proteomics data.
## Read phosphoproteomics data ## Not run: rawdata <- read.csv("Phospho (STY)Sites.txt",header=T,sep='\t') ## Quality control for phosphoproteomics data qc_results <- qc_maxquant(rawdata, "./experiment_code_file.txt", min_score = 40, min_loc_prob = 0.75, max_na_num = 2) qc_result <- qc_results[[1]] qc_result_for_motifanalysis <- qc_results[[2]] ## Normalizaiton, imputation and filtering summary_phos_norm <- norm_maxquant(qc_result, qc_result_for_motifanalysis, norm_method = "global", impute_method = "minimum/10", top = 0.9) ## Read proteomics data proteomics_data <- read.csv("./proteinGroups.txt", sep = "\t") results <- norm_based_on_proteomics(summary_phos_norm, proteomics_data, "./phosphorylation_exp_design_info.txt", "./phosphorylation_exp_design_info.txt") summary_phos_norm_based_on_pro <- results[[1]] pro_norm <- results[[2]] ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.