Description Usage Arguments Value Note See Also Examples
This function updates the MLSeq object. If one of the options is changed inside MLSeq object, it should be updated to pass its effecs into classification results.
1 2 3 4 5 | ## S3 method for class 'MLSeq'
update(object, ..., env = .GlobalEnv)
## S4 method for signature 'MLSeq'
update(object, ..., env = .GlobalEnv)
|
object |
a model of |
... |
optional arguements passed to |
env |
an environment. Define the environment where the trained model is stored. |
same object as an MLSeq object returned from classify
.
When an MLSeq
object is updated, new results are updated on the given object. The results before update process are
lost when update is done. To keep the results before update, one should copy the MLSeq object to a new object in global environment.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | ## Not run:
library(DESeq2)
data(cervical)
# a subset of cervical data with first 150 features.
data <- cervical[c(1:150), ]
# defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))
n <- ncol(data) # number of samples
p <- nrow(data) # number of features
# number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)
# train set
data.train <- data[ ,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind, ])
# train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ 1))
# test set
data.test <- data[ ,ind]
data.test <- as.matrix(data.test + 1)
classts <- data.frame(condition=class[ind, ])
data.testS4 <- DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ 1))
## Number of repeats (repeats) might change model accuracies ##
# Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",
ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
cart
# Change classification model into "Random Forests" (rf)
method(cart) <- "rf"
rf <- update(cart)
rf
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.