Description Usage Arguments Value Note Author(s) See Also Examples
This function predicts the class labels of test data for a given model.
predictClassify
and predict
functions return the predicted class information along with trained model.
Predicted values are given either as class labels or estimated probabilities of each class for
each sample. If type = "raw"
, as can be seen in the example below, the predictions are
extracted as raw class labels.In order to extract estimated class probabilities, one should follow the steps below:
set classProbs = TRUE
within control
arguement in classify
set type = "prob"
within predictClassify
1 2 3 4 5 6 7 |
object |
a model of |
test.data |
a |
... |
further arguments to be passed to or from methods. These arguements are used in
|
MLSeqObject
an MLSeq object returned from classify
. See details.
Predictions
a data frame or vector including either the predicted class
probabilities or class labels of given test data.
predictClassify(...)
function was used in MLSeq
up to package version 1.14.x. This function is alliased with
generic function predict
. In the upcoming versions of MLSeq package, predictClassify
function will be ommitted. Default
function for predicting new observations will be predict
from version 1.16.x and later.
Dincer Goksuluk, Gokmen Zararsiz, Selcuk Korkmaz, Vahap Eldem, Ahmet Ozturk and Ahmet Ergun Karaagaoglu
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | ## Not run:
library(DESeq2)
data(cervical)
# a subset of cervical data with first 150 features.
data <- cervical[c(1:150), ]
# defining sample classes.
class <- data.frame(condition = factor(rep(c("N","T"), c(29, 29))))
n <- ncol(data) # number of samples
p <- nrow(data) # number of features
# number of samples for test set (30% test, 70% train).
nTest <- ceiling(n*0.3)
ind <- sample(n, nTest, FALSE)
# train set
data.train <- data[ ,-ind]
data.train <- as.matrix(data.train + 1)
classtr <- data.frame(condition = class[-ind, ])
# train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ 1))
# test set
data.test <- data[ ,ind]
data.test <- as.matrix(data.test + 1)
classts <- data.frame(condition=class[ind, ])
data.testS4 <- DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ 1))
## Number of repeats (repeats) might change model accuracies ##
# Classification and Regression Tree (CART) Classification
cart <- classify(data = data.trainS4, method = "rpart",
ref = "T", preProcessing = "deseq-vst",
control = trainControl(method = "repeatedcv", number = 5,
repeats = 3, classProbs = TRUE))
cart
# predicted classes of test samples for CART method (class probabilities)
pred.cart = predictClassify(cart, data.testS4, type = "prob")
pred.cart
# predicted classes of test samples for RF method (class labels)
pred.cart = predictClassify(cart, data.testS4, type = "raw")
pred.cart
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.