R/recursiveSplit.R

Defines functions .createSCERecursiveSplitModule .createSCERecursiveSplitCell .recursiveSplitModule .recursiveSplitModuleWithSeed .recursiveSplitCell .recursiveSplitCellWithSeed .singleSplitY .singleSplitZ

.singleSplitZ <- function(counts,
                          z,
                          s,
                          K,
                          minCell = 3,
                          alpha = 1,
                          beta = 1) {
  zTa <- tabulate(z, K)
  zToSplit <- which(zTa > minCell)
  bestZ <- z
  bestLl <- -Inf
  for (i in zToSplit) {
    clustLabel <- .celda_C(
      counts[, z == i, drop = FALSE],
      K = 2,
      zInitialize = "random",
      splitOnIter = -1,
      splitOnLast = FALSE,
      verbose = FALSE
    )

    if (length(unique(celdaClusters(clustLabel)$z)) == 2) {
      ix <- z == i
      newZ <- z
      newZ[ix] <- ifelse(celdaClusters(clustLabel)$z == 2, i, K)
      ll <- .logLikelihoodcelda_C(counts, s, newZ, K, alpha, beta)

      if (ll > bestLl) {
        bestZ <- newZ
        bestLl <- ll
      }
    }
  }
  return(list(ll = bestLl, z = bestZ))
}


.singleSplitY <- function(counts,
                          y,
                          L,
                          minFeature = 3,
                          beta = 1,
                          delta = 1,
                          gamma = 1) {
  yTa <- tabulate(y, L)
  yToSplit <- which(yTa > minFeature)

  bestY <- y
  bestLl <- -Inf
  # previousY <- y
  for (i in yToSplit) {
    clustLabel <- .celda_G(counts[y == i, , drop = FALSE],
      L = 2,
      yInitialize = "random",
      splitOnIter = -1,
      splitOnLast = FALSE,
      nchains = 1,
      verbose = FALSE
    )

    if (length(unique(celdaClusters(clustLabel)$y)) == 2) {
      ix <- y == i
      newY <- y
      newY[ix] <- ifelse(celdaClusters(clustLabel)$y == 2, i, L)
      ll <- .logLikelihoodcelda_G(counts, newY, L, beta, delta, gamma)

      if (ll > bestLl) {
        bestY <- newY
        bestLl <- ll
      }
    }
  }
  return(list(ll = bestLl, y = bestY))
}


#' @title Recursive cell splitting
#' @description Uses the \link{celda_C} model to cluster cells into
#'  population for range of possible K's. The cell population labels of the
#'  previous "K-1" model are used as the initial values in the current model
#'  with K cell populations. The best split of an existing cell population is
#'  found to create the K-th cluster. This procedure is much faster than
#'  randomly initializing each model with a different K. If module labels for
#'  each feature are given in 'yInit', the \link{celda_CG} model will be used to
#'  split cell populations based on those modules instead of individual
#'  features. Module labels will also be updated during sampling and thus
#'  may end up slightly different than \code{yInit}.
#' @param x A numeric \link{matrix} of counts or a
#'  \linkS4class{SingleCellExperiment}
#'  with the matrix located in the assay slot under \code{useAssay}.
#'  Rows represent features and columns represent cells.
#' @param useAssay A string specifying the name of the
#'  \link{assay}
#'  slot to use. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param sampleLabel Vector or factor. Denotes the sample label for each cell
#'  (column) in the count matrix.
#' @param initialK Integer. Initial number of cell populations to try.
#' Default \code{5}.
#' @param maxK Integer. Maximum number of cell populations to try.
#' Default \code{25}.
#' @param tempL Integer. Number of temporary modules to identify and use in cell
#'  splitting. Only used if \code{yInit = NULL}. Collapsing features to a
#'  relatively smaller number of modules will increase the speed of clustering
#'  and tend to produce better cell populations. This number should be larger
#'  than the number of true modules expected in the dataset. Default
#'  \code{NULL.}
#' @param yInit Integer vector. Module labels for features. Cells will be
#'  clustered using the \link{celda_CG} model based on the modules specified in
#'  \code{yInit} rather than the counts of individual features. While the
#'  features will be initialized to the module labels in \code{yInit}, the
#'  labels will be allowed to move within each new model with a different K.
#' @param alpha Numeric. Concentration parameter for Theta. Adds a pseudocount
#'  to each cell population in each sample. Default \code{1}.
#' @param beta Numeric. Concentration parameter for Phi. Adds a pseudocount to
#'  each feature in each cell (if \code{yInit} is NULL) or to each module in
#'  each cell population (if \code{yInit} is set). Default \code{1}.
#' @param delta Numeric. Concentration parameter for Psi. Adds a pseudocount
#'  to each feature in each module. Only used if \code{yInit} is set. Default 1.
#' @param gamma Numeric. Concentration parameter for Eta. Adds a pseudocount
#'  to the number of features in each module. Only used if \code{yInit} is set.
#'  Default 1.
#' @param minCell Integer. Only attempt to split cell populations with at
#'  least this many cells.
#' @param reorder Logical. Whether to reorder cell populations using
#'  hierarchical clustering after each model has been created. If FALSE, cell
#'  populations numbers will correspond to the split which created the cell
#'  populations (i.e. 'K15' was created at split 15, 'K16' was created at split
#'  16, etc.). Default TRUE.
#' @param seed Integer. Passed to \link[withr]{with_seed}. For reproducibility,
#'  a default value of 12345 is used. If NULL, no calls to
#'  \link[withr]{with_seed} are made.
#' @param perplexity Logical. Whether to calculate perplexity for each model.
#'  If FALSE, then perplexity can be calculated later with
#'  \link{resamplePerplexity}. Default TRUE.
#' @param doResampling Boolean. If \code{TRUE}, then each cell in the counts
#' matrix will be resampled according to a multinomial distribution to introduce
#' noise before calculating perplexity. Default \code{FALSE}.
#' @param numResample Integer. The number of times to resample the counts matrix
#' for evaluating perplexity if \code{doResampling} is set to \code{TRUE}.
#' Default \code{5}.
#' @param verbose Logical. Whether to print log messages. Default TRUE.
#' @param logfile Character. Messages will be redirected to a file named
#'  "logfile". If NULL, messages will be printed to stdout.  Default NULL.
#' @return A \linkS4class{SingleCellExperiment} object. Function
#'  parameter settings and celda model results are stored in the
#'  \link{metadata} \code{"celda_grid_search"} slot. The models in
#'  the list will be of class \code{celda_C} if \code{yInit = NULL} or
#'  \code{celda_CG} if \code{zInit} is set.
#' @seealso \link{recursiveSplitModule} for recursive splitting of feature
#'  modules.
#' @export
setGeneric("recursiveSplitCell",
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        sampleLabel = NULL,
        initialK = 5,
        maxK = 25,
        tempL = NULL,
        yInit = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minCell = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        logfile = NULL,
        verbose = TRUE) {
    standardGeneric("recursiveSplitCell")})


#' @rdname recursiveSplitCell
#' @examples
#' data(sceCeldaCG)
#' ## Create models that range from K = 3 to K = 7 by recursively splitting
#' ## cell populations into two to produce \link{celda_C} cell clustering models
#' sce <- recursiveSplitCell(sceCeldaCG, initialK = 3, maxK = 7)
#'
#' ## Alternatively, first identify features modules using
#' ## \link{recursiveSplitModule}
#' moduleSplit <- recursiveSplitModule(sceCeldaCG, initialL = 3, maxL = 15)
#' plotGridSearchPerplexity(moduleSplit)
#' moduleSplitSelect <- subsetCeldaList(moduleSplit, list(L = 10))
#'
#' ## Then use module labels for initialization in \link{recursiveSplitCell} to
#' ## produce \link{celda_CG} bi-clustering models
#' cellSplit <- recursiveSplitCell(sceCeldaCG,
#'   initialK = 3, maxK = 7, yInit = celdaModules(moduleSplitSelect))
#' plotGridSearchPerplexity(cellSplit)
#' sce <- subsetCeldaList(cellSplit, list(K = 5, L = 10))
#' @export
setMethod("recursiveSplitCell",
    signature(x = "SingleCellExperiment"),
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        sampleLabel = NULL,
        initialK = 5,
        maxK = 25,
        tempL = NULL,
        yInit = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minCell = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        logfile = NULL,
        verbose = TRUE) {

        xClass <- "SingleCellExperiment"

        if (!altExpName %in% SingleCellExperiment::altExpNames(x)) {
            stop(altExpName, " not in 'altExpNames(x)'. Run ",
                "selectFeatures(x) first!")
        }

        altExp <- SingleCellExperiment::altExp(x, altExpName)

        if (!useAssay %in% SummarizedExperiment::assayNames(altExp)) {
            stop(useAssay, " not in assayNames(altExp(x, altExpName))")
        }

        counts <- SummarizedExperiment::assay(altExp, i = useAssay)

        if (!is.null(yInit)) {
            model <- "celda_CG"
        } else {
            model <- "celda_C"
        }

        celdaList <- .recursiveSplitCellWithSeed(counts = counts,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            doResampling = doResampling,
            numResample = numResample,
            logfile = logfile,
            verbose = verbose)

        altExp <- .createSCERecursiveSplitCell(celdaList = celdaList,
            sce = altExp,
            xClass = xClass,
            useAssay = useAssay,
            model = model,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            logfile = logfile,
            verbose = verbose)
        SingleCellExperiment::altExp(x, altExpName) <- altExp
        return(x)
    }
)


#' @rdname recursiveSplitCell
#' @examples
#' data(celdaCGSim, celdaCSim)
#' ## Create models that range from K = 3 to K = 7 by recursively splitting
#' ## cell populations into two to produce \link{celda_C} cell clustering models
#' sce <- recursiveSplitCell(celdaCSim$counts, initialK = 3, maxK = 7)
#'
#' ## Alternatively, first identify features modules using
#' ## \link{recursiveSplitModule}
#' moduleSplit <- recursiveSplitModule(celdaCGSim$counts,
#'   initialL = 3, maxL = 15)
#' plotGridSearchPerplexity(moduleSplit)
#' moduleSplitSelect <- subsetCeldaList(moduleSplit, list(L = 10))
#'
#' ## Then use module labels for initialization in \link{recursiveSplitCell} to
#' ## produce \link{celda_CG} bi-clustering models
#' cellSplit <- recursiveSplitCell(celdaCGSim$counts,
#'   initialK = 3, maxK = 7, yInit = celdaModules(moduleSplitSelect))
#' plotGridSearchPerplexity(cellSplit)
#' sce <- subsetCeldaList(cellSplit, list(K = 5, L = 10))
#' @export
setMethod("recursiveSplitCell",
    signature(x = "matrix"),
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        sampleLabel = NULL,
        initialK = 5,
        maxK = 25,
        tempL = NULL,
        yInit = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minCell = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        logfile = NULL,
        verbose = TRUE) {

        ls <- list()
        ls[[useAssay]] <- x
        sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
        SingleCellExperiment::altExp(sce, altExpName) <- sce
        xClass <- "matrix"

        if (!is.null(yInit)) {
            model <- "celda_CG"
        } else {
            model <- "celda_C"
        }

        celdaList <- .recursiveSplitCellWithSeed(counts = x,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            doResampling = doResampling,
            numResample = numResample,
            logfile = logfile,
            verbose = verbose)

        altExp <- .createSCERecursiveSplitCell(celdaList = celdaList,
            sce = SingleCellExperiment::altExp(sce, altExpName),
            xClass = xClass,
            useAssay = useAssay,
            model = model,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            logfile = logfile,
            verbose = verbose)
        SingleCellExperiment::altExp(sce, altExpName) <- altExp
        return(sce)
    }
)


.recursiveSplitCellWithSeed <- function(counts,
    sampleLabel,
    initialK,
    maxK,
    tempL,
    yInit,
    alpha,
    beta,
    delta,
    gamma,
    minCell,
    reorder,
    seed,
    perplexity,
    doResampling,
    numResample,
    logfile,
    verbose) {

    if (is.null(seed)) {
        celdaList <- .recursiveSplitCell(counts = counts,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            perplexity = perplexity,
            doResampling = doResampling,
            numResample = numResample,
            logfile = logfile,
            verbose = verbose)
    } else {
        with_seed(
            seed,
            celdaList <- .recursiveSplitCell(counts = counts,
                sampleLabel = sampleLabel,
                initialK = initialK,
                maxK = maxK,
                tempL = tempL,
                yInit = yInit,
                alpha = alpha,
                beta = beta,
                delta = delta,
                gamma = gamma,
                minCell = minCell,
                reorder = reorder,
                perplexity = perplexity,
                doResampling = doResampling,
                numResample = numResample,
                logfile = logfile,
                verbose = verbose)
        )
    }

    return(celdaList)
}


.recursiveSplitCell <- function(counts,
                               sampleLabel,
                               initialK,
                               maxK,
                               tempL,
                               yInit,
                               alpha,
                               beta,
                               delta,
                               gamma,
                               minCell,
                               reorder,
                               perplexity,
                               doResampling,
                               numResample,
                               logfile,
                               verbose) {

  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = FALSE,
    verbose = verbose
  )
  .logMessages("Starting recursive cell population splitting.",
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )

  .validateCounts(counts)

  startTime <- Sys.time()
  counts <- .processCounts(counts)
  countChecksum <- .createCountChecksum(counts)

  sampleLabel <- .processSampleLabels(sampleLabel, numCells = ncol(counts))
  s <- as.integer(sampleLabel)
  names <- list(
    row = rownames(counts),
    column = colnames(counts),
    sample = levels(sampleLabel)
  )

  if (!is.null(yInit)) {
    # Create collapsed module matrix
    L <- length(unique(yInit))
    .logMessages(date(),
      ".. Collapsing to",
      L,
      "modules",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    overallY <- .initializeCluster(L, nrow(counts), initial = yInit)
    countsY <- .rowSumByGroup(counts, overallY, L)

    # Create initial model with initialK and predifined y labels
    .logMessages(date(),
      ".. Initializing with",
      initialK,
      "populations",
      append = TRUE,
      verbose = verbose,
      logfile = logfile)
    modelInitial <- .celda_CG(counts,
      sampleLabel = sampleLabel,
      K = as.integer(initialK),
      L = as.integer(L),
      zInitialize = "split",
      yInitialize = "predefined",
      nchains = 1,
      yInit = overallY,
      alpha = alpha,
      beta = beta,
      gamma = gamma,
      delta = delta,
      verbose = FALSE,
      reorder = reorder)
    currentK <- length(unique(celdaClusters(modelInitial)$z)) + 1
    overallZ <- as.integer(celdaClusters(modelInitial)$z)
    resList <- list(modelInitial)
    while (currentK <= maxK) {
      # previousY <- overallY
      tempSplit <- .singleSplitZ(countsY,
        overallZ,
        s,
        currentK,
        minCell = 3,
        alpha = alpha,
        beta = beta
      )
      tempModel <- .celda_CG(counts,
        sampleLabel = sampleLabel,
        K = as.integer(currentK),
        L = as.integer(L),
        yInit = overallY,
        zInit = tempSplit$z,
        nchains = 1,
        zInitialize = "predefined",
        yInitialize = "predefined",
        splitOnLast = FALSE,
        stopIter = 5,
        alpha = alpha,
        beta = beta,
        gamma = gamma,
        delta = delta,
        verbose = FALSE,
        reorder = reorder
      )

      # Calculate new decomposed counts matrix with new module labels
      # overallY = clusters(tempModel)$y
      # p = .cGReDecomposeCounts(counts, overallY, previousY, countsY,
      # nByG, L = as.integer(L))
      # countsY = p$nTSByC

      # If the number of clusters is still "currentK", then keep the
      # reordering, otherwise keep the previous configuration
      if (length(unique(celdaClusters(tempModel)$z)) == currentK) {
        overallZ <- as.integer(celdaClusters(tempModel)$z)
      } else {
        overallZ <- tempSplit$z
        ll <- .logLikelihoodcelda_CG(
          counts,
          s,
          overallZ,
          as.integer(celdaClusters(tempModel)$y),
          currentK,
          L,
          alpha,
          beta,
          delta,
          gamma
        )
        tempModel <- methods::new("celda_CG",
          clusters = list(z = overallZ, y = as.integer(celdaClusters(tempModel)$y)),
          params = list(
            K = as.integer(currentK),
            L = as.integer(L),
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            countChecksum = countChecksum
          ),
          finalLogLik = ll,
          sampleLabel = sampleLabel,
          names = names
        )
      }

      resList <- c(resList, list(tempModel))
      .logMessages(date(),
        ".. Current cell population",
        currentK,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = logfile
      )
      currentK <- length(unique(overallZ)) + 1
    }

    runK <- vapply(resList, function(mod) {
      params(mod)$K
    }, integer(1))
    runL <- vapply(resList, function(mod) {
      params(mod)$L
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      L = as.integer(runL),
      K = as.integer(runK),
      stringsAsFactors = FALSE
    )
  } else if (!is.null(tempL)) {
    L <- tempL
    .logMessages(date(),
      ".. Collapsing to",
      L,
      "temporary modules",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    tempY <- .initializeSplitY(counts,
      L = as.integer(L),
      tempK = max(100, maxK),
      minFeature = 3
    )
    tempY <- as.integer(as.factor(tempY))
    L <- length(unique(tempY)) # Recalculate in case some modules are empty
    countsY <- .rowSumByGroup(counts, tempY, L)

    # Create initial model with initialK
    .logMessages(date(),
      ".. Initializing with",
      initialK,
      "populations",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    modelInitial <- .celda_C(countsY,
      sampleLabel = sampleLabel,
      K = as.integer(initialK),
      zInitialize = "split",
      nchains = 1,
      alpha = alpha,
      beta = beta,
      verbose = FALSE,
      reorder = reorder
    )
    currentK <- length(unique(celdaClusters(modelInitial)$z)) + 1
    overallZ <- as.integer(celdaClusters(modelInitial)$z)
    ll <- .logLikelihoodcelda_C(
      counts, s, overallZ, currentK,
      alpha, beta
    )
    modelInitial@params$countChecksum <- countChecksum
    modelInitial@completeLogLik <- ll
    modelInitial@finalLogLik <- ll

    resList <- list(modelInitial)
    while (currentK <= maxK) {
      # Find next best split, then do a new celda_C run with that split
      tempSplit <- .singleSplitZ(countsY,
        overallZ,
        s,
        currentK,
        minCell = 3,
        alpha = alpha,
        beta = beta
      )
      tempModel <- .celda_C(countsY,
        sampleLabel = sampleLabel,
        K = as.integer(currentK),
        nchains = 1,
        zInitialize = "random",
        alpha = alpha,
        beta = beta,
        stopIter = 5,
        splitOnLast = FALSE,
        verbose = FALSE,
        zInit = tempSplit$z,
        reorder = reorder
      )

      # Handle rare cases where a population has no cells after running
      # the model
      if (length(unique(celdaClusters(tempModel)$z)) == currentK) {
        overallZ <- as.integer(celdaClusters(tempModel)$z)
      } else {
        overallZ <- tempSplit$z
      }

      # Need to change below line to use decompose counts to save time
      ll <- .logLikelihoodcelda_C(
        counts, s, overallZ, currentK,
        alpha, beta
      )
      tempModel <- methods::new("celda_C",
        clusters = list(z = overallZ),
        params = list(
          K = as.integer(currentK),
          alpha = alpha,
          beta = beta,
          countChecksum = countChecksum
        ),
        finalLogLik = ll,
        sampleLabel = sampleLabel,
        names = names
      )

      resList <- c(resList, list(tempModel))
      .logMessages(date(),
        ".. Current cell population",
        currentK,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = logfile
      )
      currentK <- length(unique(overallZ)) + 1
    }

    runK <- vapply(resList, function(mod) {
      params(mod)$K
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      K = as.integer(runK),
      stringsAsFactors = FALSE
    )
  } else {
    # Create initial model with initialK
    .logMessages(date(),
      ".. Initializing with",
      initialK,
      "populations",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    modelInitial <- .celda_C(counts,
      sampleLabel = sampleLabel,
      K = as.integer(initialK),
      zInitialize = "split",
      nchains = 1,
      alpha = alpha,
      beta = beta,
      verbose = FALSE,
      reorder = reorder
    )
    currentK <- length(unique(celdaClusters(modelInitial)$z)) + 1
    overallZ <- as.integer(celdaClusters(modelInitial)$z)
    resList <- list(modelInitial)
    while (currentK <= maxK) {
      tempSplit <- .singleSplitZ(counts,
        overallZ,
        s,
        currentK,
        minCell = 3,
        alpha = alpha,
        beta = beta
      )
      tempModel <- .celda_C(counts,
        sampleLabel = sampleLabel,
        K = as.integer(currentK),
        nchains = 1,
        zInitialize = "random",
        alpha = alpha,
        beta = beta,
        stopIter = 5,
        splitOnLast = FALSE,
        verbose = FALSE,
        zInit = tempSplit$z,
        reorder = reorder
      )

      if (length(unique(celdaClusters(tempModel)$z)) == currentK) {
        overallZ <- as.integer(celdaClusters(tempModel)$z)
      } else {
        overallZ <- tempSplit$z
        ll <-
          .logLikelihoodcelda_C(
            counts, s, overallZ,
            currentK, alpha, beta
          )
        tempModel <- methods::new("celda_C",
          clusters = list(z = overallZ),
          params = list(
            K = as.integer(currentK),
            alpha = alpha,
            beta = beta,
            countChecksum = countChecksum
          ),
          finalLogLik = ll,
          sampleLabel = sampleLabel,
          names = names
        )
      }

      resList <- c(resList, list(tempModel))
      .logMessages(date(),
        ".. Current cell population",
        currentK,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = logfile
      )
      currentK <- length(unique(overallZ)) + 1
    }

    runK <- vapply(resList, function(mod) {
      params(mod)$K
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      K = as.integer(runK),
      stringsAsFactors = FALSE
    )
  }

  # Summarize paramters of different models
  logliks <- vapply(resList, function(mod) {
    bestLogLikelihood(mod)
  }, double(1))
  runParams <- data.frame(runParams,
    log_likelihood = logliks,
    stringsAsFactors = FALSE
  )

  celdaRes <- methods::new("celdaList",
    runParams = runParams,
    resList = resList,
    countChecksum = countChecksum
  )

  if (isTRUE(perplexity)) {
    .logMessages(date(),
      ".. Calculating perplexity",
      append = TRUE,
      verbose = verbose,
      logfile = NULL
    )
    celdaRes <- resamplePerplexity(counts, celdaRes,
                                   doResampling = doResampling,
                                   numResample = numResample)
  }
  endTime <- Sys.time()
  .logMessages(
    paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages(
    "Completed recursive cell population splitting. Total time:",
    format(difftime(endTime, startTime)),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages(
    paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )

  return(celdaRes)
}


#' @title Recursive module splitting
#' @description Uses the \link{celda_G} model to cluster features into modules
#'  for a range of possible L's. The module labels of the previous "L-1" model
#'  are used as the initial values in the current model with L modules. The best
#'  split of an existing module is found to create the L-th module. This
#'  procedure is much faster than randomly initializing each model with a
#'  different L.
#' @param x A numeric \link{matrix} of counts or a
#'  \linkS4class{SingleCellExperiment}
#'  with the matrix located in the assay slot under \code{useAssay}.
#'  Rows represent features and columns represent cells.
#' @param useAssay A string specifying which \link{assay}
#'  slot to use if \code{x} is a
#'  \link[SingleCellExperiment]{SingleCellExperiment} object. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param initialL Integer. Initial number of modules.
#' @param maxL Integer. Maximum number of modules.
#' @param tempK Integer. Number of temporary cell populations to identify and
#'  use in module splitting. Only used if \code{zInit = NULL} Collapsing cells
#'  to a relatively smaller number of cell popluations will increase the
#'  speed of module clustering and tend to produce better modules. This number
#'  should be larger than the number of true cell populations expected in the
#'  dataset. Default \code{100}.
#' @param zInit Integer vector. Collapse cells to cell populations based on
#'  labels in \code{zInit} and then perform module splitting. If NULL, no
#'  collapsing will be performed unless \code{tempK} is specified.
#'  Default \code{NULL}.
#' @param sampleLabel Vector or factor. Denotes the sample label for each cell
#'  (column) in the count matrix. Default \code{NULL}.
#' @param alpha Numeric. Concentration parameter for Theta. Adds a pseudocount
#'  to each cell population in each sample. Only used if \code{zInit} is set.
#'  Default \code{1}.
#' @param beta Numeric. Concentration parameter for Phi. Adds a pseudocount
#'  to each feature module in each cell. Default 1.
#' @param delta Numeric. Concentration parameter for Psi. Adds a pseudocount
#'  to each feature in each module. Default 1.
#' @param gamma Numeric. Concentration parameter for Eta. Adds a pseudocount
#'  to the number of features in each module. Default 1.
#' @param minFeature Integer. Only attempt to split modules with at least this
#'  many features.
#' @param reorder Logical. Whether to reorder modules using hierarchical
#'  clustering after each model has been created. If FALSE, module numbers will
#'  correspond to the split which created the module (i.e. 'L15' was created at
#'  split 15, 'L16' was created at split 16, etc.). Default TRUE.
#' @param seed Integer. Passed to \link[withr]{with_seed}. For reproducibility,
#'  a default value of 12345 is used. If NULL, no calls to
#'  \link[withr]{with_seed} are made.
#' @param perplexity Logical. Whether to calculate perplexity for each model.
#'  If FALSE, then perplexity can be calculated later with
#'  \link{resamplePerplexity}. Default \code{TRUE}.
#' @param doResampling Boolean. If \code{TRUE}, then each cell in the counts
#' matrix will be resampled according to a multinomial distribution to introduce
#' noise before calculating perplexity. Default \code{FALSE}.
#' @param numResample Integer. The number of times to resample the counts matrix
#' for evaluating perplexity if \code{doResampling} is set to \code{TRUE}.
#' Default \code{5}.
#' @param verbose Logical. Whether to print log messages. Default TRUE.
#' @param logfile Character. Messages will be redirected to a file named
#'  "logfile". If NULL, messages will be printed to stdout.  Default NULL.
#' @return A \linkS4class{SingleCellExperiment} object. Function
#'  parameter settings and celda model results are stored in the
#'  \link{metadata} \code{"celda_grid_search"} slot. The models in
#'  the list will be of class \link{celda_G} if \code{zInit = NULL} or
#'  \link{celda_CG} if \code{zInit} is set.
#' @seealso \code{recursiveSplitCell} for recursive splitting of cell
#'  populations.
#' @export
setGeneric("recursiveSplitModule",
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        initialL = 10,
        maxL = 100,
        tempK = 100,
        zInit = NULL,
        sampleLabel = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minFeature = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        verbose = TRUE,
        logfile = NULL) {
    standardGeneric("recursiveSplitModule")})


#' @rdname recursiveSplitModule
#' @examples
#' data(sceCeldaCG)
#' ## Create models that range from L=3 to L=20 by recursively splitting modules
#' ## into two
#' moduleSplit <- recursiveSplitModule(sceCeldaCG, initialL = 3, maxL = 20)
#'
#' ## Example results with perplexity
#' plotGridSearchPerplexity(moduleSplit)
#'
#' ## Select model for downstream analysis
#' celdaMod <- subsetCeldaList(moduleSplit, list(L = 10))
#' @export
setMethod("recursiveSplitModule",
    signature(x = "SingleCellExperiment"),
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        initialL = 10,
        maxL = 100,
        tempK = 100,
        zInit = NULL,
        sampleLabel = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minFeature = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        verbose = TRUE,
        logfile = NULL) {

        xClass <- "SingleCellExperiment"

        if (!altExpName %in% SingleCellExperiment::altExpNames(x)) {
            stop(altExpName, " not in 'altExpNames(x)'. Run ",
                "selectFeatures(x) first!")
        }

        altExp <- SingleCellExperiment::altExp(x, altExpName)

        if (!useAssay %in% SummarizedExperiment::assayNames(altExp)) {
            stop(useAssay, " not in assayNames(altExp(x, altExpName))")
        }

        counts <- SummarizedExperiment::assay(altExp, i = useAssay)

        if (!is.null(zInit)) {
            model <- "celda_CG"
        } else {
            model <- "celda_G"
        }

        celdaList <- .recursiveSplitModuleWithSeed(counts = counts,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            sampleLabel = sampleLabel,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            doResampling = doResampling,
            numResample = numResample,
            verbose = verbose,
            logfile = logfile)

        altExp <- .createSCERecursiveSplitModule(celdaList = celdaList,
            sce = altExp,
            xClass = xClass,
            useAssay = useAssay,
            model = model,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            sampleLabel = sampleLabel,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            verbose = verbose,
            logfile = logfile)
        SingleCellExperiment::altExp(x, altExpName) <- altExp
        return(x)
    }
)


#' @rdname recursiveSplitModule
#' @examples
#' data(celdaCGSim)
#' ## Create models that range from L=3 to L=20 by recursively splitting modules
#' ## into two
#' moduleSplit <- recursiveSplitModule(celdaCGSim$counts,
#'   initialL = 3, maxL = 20)
#'
#' ## Example results with perplexity
#' plotGridSearchPerplexity(moduleSplit)
#'
#' ## Select model for downstream analysis
#' celdaMod <- subsetCeldaList(moduleSplit, list(L = 10))
#' @export
setMethod("recursiveSplitModule",
    signature(x = "matrix"),
    function(x,
        useAssay = "counts",
        altExpName = "featureSubset",
        initialL = 10,
        maxL = 100,
        tempK = 100,
        zInit = NULL,
        sampleLabel = NULL,
        alpha = 1,
        beta = 1,
        delta = 1,
        gamma = 1,
        minFeature = 3,
        reorder = TRUE,
        seed = 12345,
        perplexity = TRUE,
        doResampling = FALSE,
        numResample = 5,
        verbose = TRUE,
        logfile = NULL) {

        ls <- list()
        ls[[useAssay]] <- x
        sce <- SingleCellExperiment::SingleCellExperiment(assays = ls)
        SingleCellExperiment::altExp(sce, altExpName) <- sce
        xClass <- "matrix"

        if (!is.null(zInit)) {
            model <- "celda_CG"
        } else {
            model <- "celda_G"
        }

        celdaList <- .recursiveSplitModuleWithSeed(counts = x,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            sampleLabel = sampleLabel,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            doResampling = doResampling,
            numResample = numResample,
            verbose = verbose,
            logfile = logfile)

        altExp <- .createSCERecursiveSplitModule(celdaList = celdaList,
            sce = SingleCellExperiment::altExp(sce, altExpName),
            xClass = xClass,
            useAssay = useAssay,
            model = model,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            sampleLabel = sampleLabel,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            verbose = verbose,
            logfile = logfile)
        SingleCellExperiment::altExp(sce, altExpName) <- altExp
        return(sce)
    }
)


.recursiveSplitModuleWithSeed <- function(counts,
    initialL,
    maxL,
    tempK,
    zInit,
    sampleLabel,
    alpha,
    beta,
    delta,
    gamma,
    minFeature,
    reorder,
    seed,
    perplexity,
    doResampling,
    numResample,
    verbose,
    logfile) {

    if (is.null(seed)) {
        celdaList <- .recursiveSplitModule(
            counts = counts,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            sampleLabel = sampleLabel,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            perplexity = perplexity,
            verbose = verbose,
            logfile = logfile,
            doResampling = doResampling,
            numResample = numResample)
    } else {
        with_seed(seed,
            celdaList <- .recursiveSplitModule(
                counts = counts,
                initialL = initialL,
                maxL = maxL,
                tempK = tempK,
                zInit = zInit,
                sampleLabel = sampleLabel,
                alpha = alpha,
                beta = beta,
                delta = delta,
                gamma = gamma,
                minFeature = minFeature,
                reorder = reorder,
                perplexity = perplexity,
                verbose = verbose,
                logfile = logfile,
                doResampling = doResampling,
                numResample = numResample)
        )
    }

    return(celdaList)
}


.recursiveSplitModule <- function(counts,
                                 initialL = 10,
                                 maxL = 100,
                                 tempK = 100,
                                 zInit = NULL,
                                 sampleLabel = NULL,
                                 alpha = 1,
                                 beta = 1,
                                 delta = 1,
                                 gamma = 1,
                                 minFeature = 3,
                                 reorder = TRUE,
                                 perplexity = TRUE,
                                 verbose = TRUE,
                                 logfile = NULL,
                                 doResampling = FALSE,
                                 numResample = 5) {

  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = FALSE,
    verbose = verbose
  )
  .logMessages("Starting recursive module splitting.",
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  startTime <- Sys.time()

  .validateCounts(counts)

  counts <- .processCounts(counts)
  countChecksum <- .createCountChecksum(counts)
  names <-
    list(row = rownames(counts), column = colnames(counts))
  sampleLabel <- .processSampleLabels(sampleLabel,
    numCells = ncol(counts)
  )
  s <- as.integer(sampleLabel)

  if (!is.null(zInit)) {
    # Create collapsed module matrix
    K <- length(unique(zInit))
    .logMessages(
      date(),
      ".. Collapsing to",
      K,
      "cell populations",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    overallZ <- .initializeCluster(
      N = K,
      len = ncol(counts),
      initial = zInit
    )
    countsZ <- .colSumByGroup(counts, overallZ, K)

    # Create initial model with initialL and predifined z labels
    .logMessages(date(),
      ".. Initializing with",
      initialL,
      "modules",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    modelInitial <- .celda_CG(counts,
      sampleLabel = sampleLabel,
      L = initialL,
      K = K,
      zInitialize = "predefined",
      yInitialize = "split",
      nchains = 1,
      zInit = overallZ,
      alpha = alpha,
      beta = beta,
      gamma = gamma,
      delta = delta,
      verbose = FALSE,
      reorder = reorder)
    currentL <- length(unique(celdaClusters(modelInitial)$y)) + 1
    overallY <- as.integer(celdaClusters(modelInitial)$y)

    resList <- list(modelInitial)
    while (currentL <= maxL) {
      # Allow features to cluster further with celda_CG
      tempSplit <- .singleSplitY(
        countsZ,
        overallY,
        currentL,
        minFeature = 3,
        beta = beta,
        delta = delta,
        gamma = gamma
      )
      tempModel <- .celda_CG(
        counts,
        L = currentL,
        K = K,
        stopIter = 5,
        splitOnIter = -1,
        splitOnLast = FALSE,
        nchains = 1,
        verbose = FALSE,
        yInitialize = "predefined",
        zInitialize = "predefined",
        yInit = tempSplit$y,
        zInit = overallZ,
        reorder = reorder
      )
      overallY <- as.integer(celdaClusters(tempModel)$y)

      ## Add new model to results list and increment L
      .logMessages(
        date(),
        ".. Created module",
        currentL,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = NULL
      )
      resList <- c(resList, list(tempModel))
      currentL <- currentL + 1
    }

    runK <- vapply(resList, function(mod) {
      params(mod)$K
    }, integer(1))
    runL <- vapply(resList, function(mod) {
      params(mod)$L
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      L = runL,
      K = runK,
      stringsAsFactors = FALSE
    )
  } else if (!is.null(tempK)) {
    K <- tempK
    .logMessages(
      date(),
      ".. Collapsing to",
      K,
      "temporary cell populations",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    z <- .initializeSplitZ(counts,
      K = K,
      minCell = 3
    )
    countsZ <- .colSumByGroup(counts, z, length(unique(z)))

    .logMessages(
      date(),
      ".. Initializing with",
      initialL,
      "modules",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    modelInitial <- .celda_G(
      countsZ,
      L = initialL,
      nchains = 1,
      verbose = FALSE
    )
    modelInitial@params$countChecksum <- countChecksum

    currentL <- length(unique(as.integer(celdaClusters(modelInitial)$y))) + 1
    overallY <- as.integer(celdaClusters(modelInitial)$y)

    ## Decomposed counts for full count matrix
    p <- .cGDecomposeCounts(counts, overallY, currentL)
    nTSByC <- p$nTSByC
    nByTS <- p$nByTS
    nGByTS <- p$nGByTS
    nByG <- p$nByG
    nG <- p$nG
    nM <- p$nM

    resList <- list(modelInitial)
    while (currentL <= maxL) {
      # Allow features to cluster further
      previousY <- overallY
      tempSplit <- .singleSplitY(
        countsZ,
        overallY,
        currentL,
        minFeature = 3,
        beta = beta,
        delta = delta,
        gamma = gamma
      )
      tempModel <- .celda_G(
        countsZ,
        L = currentL,
        stopIter = 5,
        splitOnIter = -1,
        splitOnLast = FALSE,
        nchains = 1,
        verbose = FALSE,
        yInitialize = "predefined",
        yInit = tempSplit$y,
        reorder = reorder
      )
      overallY <- as.integer(celdaClusters(tempModel)$y)

      # Adjust decomposed count matrices
      p <- .cGReDecomposeCounts(counts,
        overallY,
        previousY,
        nTSByC,
        nByG,
        L = currentL
      )
      nTSByC <- p$nTSByC
      nByTS <- p$nByTS
      nGByTS <- p$nGByTS
      previousY <- overallY

      ## Create the final model object with correct info on full counts
      ## matrix
      tempModel@finalLogLik <- .cGCalcLL(
        nTSByC = nTSByC,
        nByTS = nByTS,
        nByG = nByG,
        nGByTS = nGByTS,
        nM = nM,
        nG = nG,
        L = currentL,
        beta = beta,
        delta = delta,
        gamma = gamma
      )
      tempModel@completeLogLik <- bestLogLikelihood(tempModel)
      tempModel@params$countChecksum <- countChecksum
      tempModel@names <- names

      ## Add extra row/column for next round of L
      nTSByC <- rbind(nTSByC, rep(0L, ncol(nTSByC)))
      nByTS <- c(nByTS, 0L)
      nGByTS <- c(nGByTS, 0L)

      ## Add new model to results list and increment L
      .logMessages(
        date(),
        ".. Created module",
        currentL,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = NULL
      )
      resList <- c(resList, list(tempModel))
      currentL <- currentL + 1
    }

    runL <- vapply(resList, function(mod) {
      params(mod)$L
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      L = runL,
      stringsAsFactors = FALSE
    )
  } else {
    .logMessages(
      date(),
      ".. Initializing with",
      initialL,
      "modules",
      append = TRUE,
      verbose = verbose,
      logfile = logfile
    )
    modelInitial <- .celda_G(
      counts,
      L = initialL,
      maxIter = 20,
      nchains = 1,
      verbose = FALSE
    )
    overallY <- as.integer(celdaClusters(modelInitial)$y)
    currentL <- length(unique(overallY)) + 1

    ## Perform splitting for y labels
    resList <- list(modelInitial)
    while (currentL <= maxL) {
      # Allow features to cluster further
      previousY <- overallY
      tempSplit <- .singleSplitY(
        counts,
        overallY,
        currentL,
        minFeature = 3,
        beta = beta,
        delta = delta,
        gamma = gamma
      )
      tempModel <- .celda_G(
        counts,
        L = currentL,
        stopIter = 5,
        splitOnIter = -1,
        splitOnLast = FALSE,
        nchains = 1,
        verbose = FALSE,
        yInitialize = "predefined",
        yInit = tempSplit$y,
        reorder = reorder
      )
      overallY <- as.integer(celdaClusters(tempModel)$y)

      ## Add new model to results list and increment L
      .logMessages(
        date(),
        ".. Created module",
        currentL,
        "| logLik:",
        bestLogLikelihood(tempModel),
        append = TRUE,
        verbose = verbose,
        logfile = NULL
      )
      resList <- c(resList, list(tempModel))
      currentL <- currentL + 1
    }

    runL <- vapply(resList, function(mod) {
      params(mod)$L
    }, integer(1))
    runParams <- data.frame(
      index = seq.int(1, length(resList)),
      L = runL,
      stringsAsFactors = FALSE
    )
  }

  ## Summarize parameters of different models
  logliks <- vapply(resList, function(mod) {
    bestLogLikelihood(mod)
  }, double(1))
  runParams <- data.frame(runParams,
    log_likelihood = logliks,
    stringsAsFactors = FALSE
  )

  celdaRes <- methods::new(
    "celdaList",
    runParams = runParams,
    resList = resList,
    countChecksum = countChecksum
  )

  if (isTRUE(perplexity)) {
    .logMessages(
      date(),
      ".. Calculating perplexity",
      append = TRUE,
      verbose = verbose,
      logfile = NULL
    )
    celdaRes <- resamplePerplexity(counts, celdaRes,
                                   doResampling = doResampling,
                                   numResample = numResample)
  }

  endTime <- Sys.time()
  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages("Completed recursive module splitting. Total time:",
    format(difftime(endTime, startTime)),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )
  .logMessages(paste(rep("=", 50), collapse = ""),
    logfile = logfile,
    append = TRUE,
    verbose = verbose
  )

  return(celdaRes)
}


.createSCERecursiveSplitCell <- function(celdaList,
    sce,
    xClass,
    useAssay,
    model,
    sampleLabel,
    initialK,
    maxK,
    tempL,
    yInit,
    alpha,
    beta,
    delta,
    gamma,
    minCell,
    reorder,
    seed,
    perplexity,
    logfile,
    verbose) {

    S4Vectors::metadata(sce)[["celda_grid_search"]] <- celdaList

    S4Vectors::metadata(sce)$celda_grid_search@celdaGridSearchParameters <-
        list(xClass = xClass,
            useAssay = useAssay,
            model = model,
            sampleLabel = sampleLabel,
            initialK = initialK,
            maxK = maxK,
            tempL = tempL,
            yInit = yInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minCell = minCell,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            logfile = logfile,
            verbose = verbose)
    SummarizedExperiment::colData(sce)$"celda_sample_label" <- sampleLabel
    return(sce)

}


.createSCERecursiveSplitModule <- function(celdaList,
    sce,
    xClass,
    useAssay,
    model,
    initialL,
    maxL,
    tempK,
    zInit,
    sampleLabel,
    alpha,
    beta,
    delta,
    gamma,
    minFeature,
    reorder,
    seed,
    perplexity,
    verbose,
    logfile) {

    S4Vectors::metadata(sce)[["celda_grid_search"]] <- celdaList

    S4Vectors::metadata(sce)$celda_grid_search@celdaGridSearchParameters <-
        list(xClass = xClass,
            useAssay = useAssay,
            model = model,
            sampleLabel = sampleLabel,
            initialL = initialL,
            maxL = maxL,
            tempK = tempK,
            zInit = zInit,
            alpha = alpha,
            beta = beta,
            delta = delta,
            gamma = gamma,
            minFeature = minFeature,
            reorder = reorder,
            seed = seed,
            perplexity = perplexity,
            logfile = logfile,
            verbose = verbose)
    SummarizedExperiment::colData(sce)$"celda_sample_label" <- sampleLabel
    return(sce)
}
campbio/celda documentation built on April 5, 2024, 11:47 a.m.