R/celda_functions.R

Defines functions retrieveFeatureIndex featureModuleTable .processSampleLabels .rdirichlet .createCountChecksum .validateCounts .processCounts distinctColors .logMessages .recodeClusterY recodeClusterY .recodeClusterZ recodeClusterZ normalizeCounts .normalizeLogProbs .hellingerDist .spearmanDist .cosine .cosineDist .sampleLl

Documented in distinctColors featureModuleTable normalizeCounts recodeClusterY recodeClusterZ retrieveFeatureIndex

.sampleLl <- function(llProbs) {
  probsSub <- exp(llProbs - max(llProbs))
  probsNorm <- probsSub / sum(probsSub)
  probsSelect <- sample.int(
    length(probsNorm),
    size = 1L,
    replace = TRUE,
    prob = probsNorm
  )
  return(probsSelect)
}


.cosineDist <- function(x) {
  x <- t(x)
  y <- (1 - .cosine(x)) / 2
  return(stats::as.dist(y))
}


.cosine <- function(x) {
  y <- x %*% t(x) / (sqrt(rowSums(x^2) %*% t(rowSums(x^2))))
  return(y)
}


.spearmanDist <- function(x) {
  y <- (1 - stats::cor(x, method = "spearman")) / 2
  return(stats::as.dist(y))
}


.hellingerDist <- function(x) {
  y <- stats::dist(t(sqrt(x)), method = "euclidean") * 1 / sqrt(2)
  return(y)
}


.normalizeLogProbs <- function(llProbs) {
  llProbs <- exp(sweep(llProbs, 1, base::apply(llProbs, 1, max), "-"))
  probs <- sweep(llProbs, 1, rowSums(llProbs), "/")
  return(probs)
}


#' @title Normalization of count data
#' @description Performs normalization, transformation, and/or scaling of a
#'  counts matrix
#' @param counts Integer, Numeric or Sparse matrix. Rows represent features
#' and columns represent cells.
#' @param normalize Character.
#'  Divides counts by the library sizes for each cell. One of 'proportion',
#'  'cpm', 'median', or 'mean'. 'proportion' uses the total counts for each
#'  cell as the library size. 'cpm' divides the library size of each cell by
#'  one million to produce counts per million. 'median' divides the library
#'  size of each cell by the median library size across all cells. 'mean'
#'  divides the library size of each cell by the mean library size across all
#'  cells.
#' @param scaleFactor Numeric. Sets the scale factor for cell-level
#'  normalization. This scale factor is multiplied to each cell after the
#'  library size of each cell had been adjusted in \code{normalize}. Default
#'  \code{NULL} which means no scale factor is applied.
#' @param transformationFun Function. Applys a transformation such as
#'  \link{sqrt}, \link{log}, \link{log2}, \link{log10}, or \link{log1p}.
#'  If NULL, no transformation will be applied. Occurs after normalization.
#'  Default NULL.
#' @param scaleFun Function. Scales the rows of the normalized and transformed
#'  count matrix. For example, 'scale' can be used to z-score normalize the
#'  rows. Default NULL.
#' @param pseudocountNormalize Numeric. Add a pseudocount to counts before
#'  normalization. Default 0.
#' @param pseudocountTransform Numeric. Add a pseudocount to normalized counts
#'  before applying the transformation function. Adding a pseudocount
#'  can be useful before applying a log transformation. Default  0.
#' @return Numeric Matrix. A normalized matrix.
#' @examples
#' data(celdaCGSim)
#' normalizedCounts <- normalizeCounts(celdaCGSim$counts, "proportion",
#'   pseudocountNormalize = 1)
#' @importFrom Matrix colSums
#' @export
normalizeCounts <- function(counts,
                            normalize = c("proportion", "cpm",
                              "median", "mean"),
                            scaleFactor = NULL,
                            transformationFun = NULL,
                            scaleFun = NULL,
                            pseudocountNormalize = 0,
                            pseudocountTransform = 0) {

  normalize <- match.arg(normalize)

  if (!is.null(transformationFun) &&
    !is.function(transformationFun)) {
    stop("'transformationFun' needs to be of class 'function'")
  }
  if (!is.null(scaleFun) && !is.function(scaleFun)) {
    stop("'scaleFun' needs to be of class 'function'")
  }
  # Perform normalization
  if (normalize == "proportion" & inherits(counts, "matrix")) {
    norm <- fastNormProp(counts, pseudocountNormalize)
  } else {
    counts <- counts + pseudocountNormalize
    cs <- colSums(counts)
    norm <- switch(
      normalize,
      "proportion" = sweep(counts, 2, cs, "/"),
      "cpm" = sweep(counts, 2, cs / 1e6, "/"),
      "median" = sweep(counts, 2, cs / stats::median(cs), "/"),
      "mean" = sweep(counts, 2, cs / mean(cs), "/")
    )
  }

  if (!is.null(scaleFactor)) {
      norm <- norm * scaleFactor
  }

  if (!is.null(transformationFun)) {
    norm <- do.call(
      transformationFun,
      list(norm + pseudocountTransform)
    )
  }
  if (!is.null(scaleFun)) {
    norm <- t(base::apply(norm, 1, scaleFun))
  }
  colnames(norm) <- colnames(counts)
  rownames(norm) <- rownames(counts)
  return(norm)
}


#' @title Recode cell cluster labels
#' @description Recode cell subpopulaton clusters using a mapping in the
#'  \code{from} and \code{to} arguments.
#' @param sce \linkS4class{SingleCellExperiment} object returned from
#'  \link{celda_C} or \link{celda_CG}. Must contain column
#'  \code{celda_cell_cluster} in
#'  \code{\link{colData}(altExp(sce, altExpName))}.
#' @param from Numeric vector. Unique values in the range of
#'  \code{seq(max(as.integer(celdaClusters(sce, altExpName = altExpName))))}
#'  that correspond to the original cluster
#'  labels in \code{sce}.
#' @param to Numeric vector. Unique values in the range of
#'  \code{seq(max(as.integer(celdaClusters(sce, altExpName = altExpName))))}
#'  that correspond to the new cluster labels.
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @return \linkS4class{SingleCellExperiment} object with recoded cell
#'  cluster labels.
#' @examples
#' data(sceCeldaCG)
#' sceReorderedZ <- recodeClusterZ(sceCeldaCG, c(1, 3), c(3, 1))
#' @importFrom plyr mapvalues
#' @export
recodeClusterZ <- function(sce, from, to, altExpName = "featureSubset") {
    if (length(setdiff(from, to)) != 0) {
        stop("All values in 'from' must have a mapping in 'to'")
    }
    if (is.null(celdaClusters(sce, altExpName = altExpName))) {
        stop("Provided 'sce' argument does not have a 'celda_cell_cluster'",
            " column in 'colData(altExp(sce, altExpName))'")
    }
    z <- as.integer(celdaClusters(sce, altExpName = altExpName))
    new.clusters <- plyr::mapvalues(z,
                                    from = from, to = to)
    new.clusters <- factor(new.clusters, levels =
                             sort(as.numeric(unique(new.clusters))))

    celdaClusters(sce, altExpName = altExpName) <- new.clusters
    return(sce)
}


# for deprecated celda model objects
.recodeClusterZ <- function(celdaMod, from, to) {
    if (length(setdiff(from, to)) != 0) {
        stop("All values in 'from' must have a mapping in 'to'")
    }
    if (is.null(celdaClusters(celdaMod)$z)) {
        stop("Provided celdaMod argument does not have a z attribute")
    }
    z <- as.integer(celdaClusters(celdaMod)$z)
    new.clusters <- plyr::mapvalues(z, from = from, to = to)
    new.clusters <- factor(new.clusters, levels =
                             sort(as.numeric(unique(new.clusters))))
    
    celdaMod@clusters$z <- new.clusters
    return(celdaMod)
}


#' @title Recode feature module labels
#' @description Recode feature module clusters using a mapping in the
#'  \code{from} and \code{to} arguments.
#' @param sce \linkS4class{SingleCellExperiment} object returned from
#'  \link{celda_G} or \link{celda_CG}. Must contain column
#'  \code{celda_feature_module} in
#'  \code{\link{rowData}(altExp(sce, altExpName))}.
#' @param from Numeric vector. Unique values in the range of
#'  \code{seq(celdaModules(sce))} that correspond to the original module labels
#'  in \code{sce}.
#' @param to Numeric vector. Unique values in the range of
#'  \code{seq(celdaModules(sce))} that correspond to the new module labels.
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @return @return \linkS4class{SingleCellExperiment} object with recoded
#'  feature module labels.
#' @examples
#' data(sceCeldaCG)
#' sceReorderedY <- recodeClusterY(sceCeldaCG, c(1, 3), c(3, 1))
#' @export
recodeClusterY <- function(sce, from, to, altExpName = "featureSubset") {
    if (length(setdiff(from, to)) != 0) {
        stop("All values in 'from' must have a mapping in 'to'")
    }
    if (is.null(celdaModules(sce, altExpName = altExpName))) {
        stop("Provided 'sce' argument does not have a 'celda_feature_module'",
            " column in 'rowData(altExp(sce, altExpName))'")
    }
    y <- as.integer(celdaModules(sce, altExpName = altExpName))
    new.clusters <- plyr::mapvalues(y, from = from, to = to)
    new.clusters <- factor(new.clusters, levels =
                             sort(as.numeric(unique(new.clusters))))
    
    celdaModules(sce, altExpName = altExpName) <- new.clusters
    return(sce)
}


# for deprecated celda model objects
.recodeClusterY <- function(celdaMod, from, to) {
    if (length(setdiff(from, to)) != 0) {
        stop("All values in 'from' must have a mapping in 'to'")
    }
    if (is.null(celdaClusters(celdaMod)$y)) {
        stop("Provided celdaMod argument does not have a y attribute")
    }
    y <- as.integer(celdaClusters(celdaMod)$y)
    
    new.clusters <- plyr::mapvalues(y, from = from, to = to)
    new.clusters <- factor(new.clusters, levels =
                             sort(as.numeric(unique(new.clusters))))
    
    celdaMod@clusters$y <- new.clusters
    return(celdaMod)
}


#' @title Check count matrix consistency
#' @description Checks if the counts matrix is the same one used to generate
#'  the celda model object by comparing dimensions and MD5 checksum.
#' @param counts Integer , Numeric, or Sparse matrix. Rows represent features
#' and columns represent cells.
#' @param celdaMod A \code{celdaModel} or \code{celdaList} object.
#' @param errorOnMismatch Logical. Whether to throw an error in the event of
#'  a mismatch. Default TRUE.
#' @return Returns TRUE if provided count matrix matches the one used in the
#'  celda object and/or \code{errorOnMismatch = FALSE}, FALSE otherwise.
#' @export
setGeneric("compareCountMatrix",
    function(counts, celdaMod, errorOnMismatch = TRUE) {
        standardGeneric("compareCountMatrix")})


#' @rdname compareCountMatrix
#' @examples
#' data(celdaCGSim, celdaCGMod)
#' compareCountMatrix(celdaCGSim$counts, celdaCGMod, errorOnMismatch = FALSE)
#' @export
setMethod("compareCountMatrix",
    signature(celdaMod = "celdaModel"),
    function(counts, celdaMod, errorOnMismatch = TRUE) {

        if ("y" %in% names(celdaClusters(celdaMod))) {
            if (nrow(counts) != length(celdaClusters(celdaMod)$y)) {
                stop(
                    "The provided celda object was generated from a counts",
                    " matrix with a different number of features than the one",
                    " provided."
                )
            }
        }

        if ("z" %in% names(celdaClusters(celdaMod))) {
            if (ncol(counts) != length(celdaClusters(celdaMod)$z)) {
                stop(
                    "The provided celda object was generated from a counts",
                    " matrix with a different number of cells than the one",
                    " provided."
                )
            }
        }
        celdaChecksum <- params(celdaMod)$countChecksum
        counts <- .processCounts(counts)

        # Checksums are generated in celdaGridSearch and model after processing
        count.md5 <- .createCountChecksum(counts)
        res <- isTRUE(count.md5 == celdaChecksum)
        if (res) {
            return(TRUE)
        }
        if (!res && errorOnMismatch) {
            stop(
                "There was a mismatch between the provided count matrix and",
                " the count matrix used to generate the provided celda result."
            )
        } else if (!res && !errorOnMismatch) {
            warning("There was a mismatch between the provided count matrix",
                " and the count matrix used to generate the provided celda",
                " result.")
            return(FALSE)
        }
    }
)


#' @rdname compareCountMatrix
#' @examples
#' data(celdaCGSim, celdaCGGridSearchRes)
#' compareCountMatrix(celdaCGSim$counts, celdaCGGridSearchRes,
#'     errorOnMismatch = FALSE)
#' @export
setMethod("compareCountMatrix",
    signature(celdaMod = "celdaList"),
    function(counts, celdaMod, errorOnMismatch = TRUE) {

        if ("y" %in% names(celdaMod@resList[[1]]@clusters)) {
            if (nrow(counts) != length(celdaMod@resList[[1]]@clusters$y)) {
                stop(
                    "The provided celda object was generated from a counts",
                    " matrix with a different number of features than the one",
                    " provided."
                )
            }
        }

        if ("z" %in% names(celdaMod@resList[[1]]@clusters)) {
            if (ncol(counts) != length(celdaMod@resList[[1]]@clusters$z)) {
                stop(
                    "The provided celda object was generated from a counts",
                    " matrix with a different number of cells than the one",
                    " provided."
                )
            }
        }
        celdaChecksum <- celdaMod@countChecksum
        counts <- .processCounts(counts)

        # Checksums are generated in celdaGridSearch and model after processing
        count.md5 <- .createCountChecksum(counts)
        res <- isTRUE(count.md5 == celdaChecksum)
        if (res) {
            return(TRUE)
        }
        if (!res && errorOnMismatch) {
            stop(
                "There was a mismatch between the provided count matrix and",
                " the count matrix used to generate the provided celda result."
            )
        } else if (!res && !errorOnMismatch) {
            warning("There was a mismatch between the provided count matrix",
                " and the count matrix used to generate the provided celda",
                " result.")
            return(FALSE)
        }
    }
)


.logMessages <- function(...,
                         sep = " ",
                         logfile = NULL,
                         append = FALSE,
                         verbose = TRUE) {
  if (isTRUE(verbose)) {
    if (!is.null(logfile)) {
      if (!is.character(logfile) || length(logfile) > 1) {
        stop(
          "The log file parameter needs to be a single character",
          " string."
        )
      }
      cat(paste(..., "\n", sep = sep),
        file = logfile,
        append = append
      )
    } else {
      message(paste(..., sep = sep))
    }
  }
}


#' @title Create a color palette
#' @description Generate a palette of `n` distinct colors.
#' @param n Integer. Number of colors to generate.
#' @param hues Character vector. Colors available from `colors()`. These will
#'  be used as the base colors for the clustering scheme in HSV. Different
#'  saturations and values will be generated for each hue. Default c("red",
#'  "cyan", "orange", "blue", "yellow", "purple", "green", "magenta").
#' @param saturationRange Numeric vector. A vector of length 2 denoting the
#'  saturation for HSV. Values must be in [0,1]. Default: c(0.25, 1).
#' @param valueRange Numeric vector. A vector of length 2 denoting the range
#'  of values for HSV. Values must be in [0,1]. Default: `c(0.5, 1)`.
#' @return A vector of distinct colors that have been converted to HEX from HSV.
#' @examples
#' colorPal <- distinctColors(6) # can be used in plotting functions
#' @importFrom grDevices colors
#' @importFrom grDevices rgb2hsv
#' @importFrom grDevices hsv
#' @export
distinctColors <- function(n,
                           hues = c(
                             "red",
                             "cyan",
                             "orange",
                             "blue",
                             "yellow",
                             "purple",
                             "green",
                             "magenta"
                           ),
                           saturationRange = c(0.7, 1),
                           valueRange = c(0.7, 1)) {
  if (!(all(hues %in% grDevices::colors()))) {
    stop(
      "Only color names listed in the 'color' function can be used in",
      " 'hues'"
    )
  }
  # Convert R colors to RGB and then to HSV color format
  huesHsv <- grDevices::rgb2hsv(grDevices::col2rgb(hues))
  # Calculate all combination of saturation/value pairs
  # Note that low saturation with low value (i.e. high darkness) is too dark
  # for all hues. Likewise, high saturation with high value (i.e. low
  # darkness) is hard to distinguish. Therefore, saturation and value are
  # set to be anticorrelated
  numVs <- ceiling(n / length(hues))
  s <- seq(
    from = saturationRange[1],
    to = saturationRange[2],
    length = numVs
  )
  v <- seq(
    from = valueRange[2],
    to = valueRange[1],
    length = numVs
  )
  # Create all combination of hues with saturation/value pairs
  list <- lapply(seq(numVs), function(x) {
    rbind(huesHsv[1, ], s[x], v[x])
  })
  newHsv <- do.call(cbind, list)
  # Convert to hex
  col <- grDevices::hsv(newHsv[1, ], newHsv[2, ], newHsv[3, ])
  return(col[seq(n)])
}


.processCounts <- function(counts) {
  if (!((inherits(counts, "matrix") &
        (is.integer(counts) | is.numeric(counts))) |
     inherits(counts, "dgCMatrix"))) {
    stop("'counts' must be a sparse dgCMatrix ",
         "from the 'Matrix' package or a matrix containing integer or numeric ",
         "values.")
  }
  return(counts)
}


# Perform some simple checks on the counts matrix, to ensure celda modeling
# expectations are met
#' @importFrom Matrix rowSums colSums
.validateCounts <- function(counts) {
  countRowSum <- rowSums(counts)
  countColSum <- colSums(counts)

  if (sum(countRowSum == 0) > 0 | sum(countColSum == 0) > 0) {
    stop(
      "Each row and column of the count matrix must have at least",
      " one count"
    )
  }
}


# Wrapper function, creates checksum for matrix.
# Feature names, cell names are not taken into account.
#' @importFrom digest digest
.createCountChecksum <- function(counts) {
  rownames(counts) <- NULL
  colnames(counts) <- NULL
  countChecksum <- digest::digest(counts, algo = "md5")
  return(countChecksum)
}


# Generate n random deviates from the Dirichlet function with shape parameters
# alpha. Adapted from gtools v3.5
.rdirichlet <- function(n, alpha) {
  l <- length(alpha)
  x <- matrix(stats::rgamma(l * n, alpha),
    ncol = l,
    byrow = TRUE
  )
  # Check for case where all sampled entries are zero due to round off
  # One entry will be randomly chosen to be one
  isZero <- rowSums(x) == 0
  assignment <- sample(seq(l), size = sum(isZero), replace = TRUE)
  x[cbind(which(isZero), assignment)] <- 1
  # Normalize
  sm <- x %*% rep(1, l)
  y <- x / as.vector(sm)
  return(y)
}


# Make sure provided sample labels are the right type,
# or generate some if none were provided
.processSampleLabels <- function(sampleLabel, numCells) {
  if (is.null(sampleLabel)) {
    sampleLabel <- as.factor(rep("Sample_1", numCells))
  } else {
    if (length(sampleLabel) != numCells) {
      stop(
        "'sampleLabel' must be the same length as the number of",
        " columns in the 'counts' matrix."
      )
    }
  }

  if (!is.factor(sampleLabel)) {
    sampleLabel <- as.factor(sampleLabel)
  }
  return(sampleLabel)
}


#' @title Output a feature module table
#' @description Creates a table that contains the list of features in
#'  each feature module.
#' @param sce A \linkS4class{SingleCellExperiment} object returned by
#'  \link{celda_G}, or \link{celda_CG}, with the matrix
#'  located in the \code{useAssay} assay slot.
#'  Rows represent features and columns represent cells.
#' @param useAssay A string specifying which \link{assay}
#'  slot to use. Default "counts".
#' @param altExpName The name for the \link{altExp} slot
#'  to use. Default "featureSubset".
#' @param displayName Character. The column name of
#'  \code{rowData(sce)} that specifies the display names for
#'  the features. Default \code{NULL}, which displays the row names.
#' @param outputFile File name for feature module table. If NULL, file will
#'  not be created. Default NULL.
#' @return Matrix. Contains a list of features per each column (feature module)
#' @examples
#' data(sceCeldaCG)
#' featureModuleTable(sceCeldaCG)
#' @export
featureModuleTable <- function(sce,
    useAssay = "counts",
    altExpName = "featureSubset",
    displayName = NULL,
    outputFile = NULL) {

  factorizeMatrix <- factorizeMatrix(sce,
      useAssay = useAssay,
      altExpName = altExpName,
      type = "proportion")
  altExp <- SingleCellExperiment::altExp(sce, altExpName)

  allGenes <- topRank(factorizeMatrix$proportions$module, n = nrow(altExp))
  maxlen <- max(vapply(allGenes$names, length, integer(1)))

  if (is.null(displayName)) {
      res <- vapply(allGenes$names,
          FUN = "[",
          FUN.VALUE = character(length = maxlen),
          seq(maxlen))
  } else {
      dn <- lapply(allGenes$index,
          FUN = function(v) {
            SummarizedExperiment::rowData(altExp)[[displayName]][v]
          })
      res <- vapply(dn,
          FUN = "[",
          FUN.VALUE = character(length = maxlen),
          seq(maxlen))
  }

  res <- apply(res, c(1, 2), function(x) {
    if (is.na(x)) {
      return("")
    } else {
      return(x)
    }
  })

  if (is.null(outputFile)) {
    return(res)
  } else {
    utils::write.table(
      res,
      file = outputFile,
      sep = "\t",
      row.names = FALSE,
      quote = FALSE
    )
  }
}


#' @title Retrieve row index for a set of features
#' @description This will return indices of features among the rownames
#' or rowData of a data.frame, matrix, or a \linkS4class{SummarizedExperiment}
#' object including a \linkS4class{SingleCellExperiment}.
#' Partial matching (i.e. grepping) can be used by setting
#' \code{exactMatch = FALSE}.
#' @param features Character vector of feature names to find in the rows of
#' \code{x}.
#' @param x A data.frame, matrix, or \linkS4class{SingleCellExperiment}
#' object to search.
#' @param by Character. Where to search for features in \code{x}. If set to
#' \code{"rownames"} then the features will be searched for among
#' \code{rownames(x)}. If \code{x} inherits from class
#' \linkS4class{SummarizedExperiment}, then \code{by} can be one of the
#' fields in the row annotation data.frame (i.e. one of
#' \code{colnames(rowData(x))}).
#' @param exactMatch Boolean. Whether to only identify exact matches
#' or to identify partial matches using \code{\link{grep}}.
#' @param removeNA Boolean. If set to \code{FALSE}, features not found in
#' \code{x} will be given \code{NA} and the returned vector will be the same
#' length as \code{features}. If set to \code{TRUE}, then the \code{NA}
#' values will be removed from the returned vector. Default \code{FALSE}.
#' @return A vector of row indices for the matching features in \code{x}.
#' @author Yusuke Koga, Joshua Campbell
#' @seealso '\link[scater]{retrieveFeatureInfo}' from package \code{'scater'}
#' and \code{link{regex}} for how to use regular expressions when
#' \code{exactMatch = FALSE}.
#' @examples
#' data(celdaCGSim)
#' retrieveFeatureIndex(c("Gene_1", "Gene_5"), celdaCGSim$counts)
#' retrieveFeatureIndex(c("Gene_1", "Gene_5"), celdaCGSim$counts,
#'                                             exactMatch = FALSE)
#' @export
retrieveFeatureIndex <- function(features,
                                 x,
                                 by = "rownames",
                                 exactMatch = TRUE,
                                 removeNA = FALSE) {

  # Extract vector to search through
  if (by == "rownames") {
    if (is.null(rownames(x))) {
      stop("'rownames' of 'x' are 'NULL'. Please set 'rownames' or change",
           " 'by' to search a different column in 'x'.")
    }
    search <- rownames(x)
  } else if (length(ncol(x)) > 0) {
    if (inherits(x, "SummarizedExperiment")) {
      if (!(by %in% colnames(SummarizedExperiment::rowData(x)))) {
        stop("'by' is not a column in 'rowData(x)'.")
      }
      search <- SummarizedExperiment::rowData(x)[, by]
    } else {
      if (!(by %in% colnames(x))) {
        stop("'by' is not a column in 'x'.")
      }
      search <- x[, by]
    }
  } else {
    search <- as.character(x)
  }

  # Match each element of 'pattern' in vector 'search'
  if (!isTRUE(exactMatch)) {
    featuresIndices <- rep(NA, length(features))
    for (i in seq_along(features)) {
      g <- grep(features[i], search)
      if (length(g) == 1) {
        featuresIndices[i] <- g
      } else if (length(g) > 1) {
        warning(
          "Feature '", features[i], "' matched multiple items in '",
          by, "': ", paste(search[g], collapse = ","),
          ". Only the first match will be selected."
        )
        featuresIndices[i] <- g[1]
      }
    }
  } else {
    featuresIndices <- match(features, search)
  }

  if (sum(is.na(featuresIndices)) > 0) {
    if (sum(is.na(featuresIndices)) == length(features)) {
      if (isTRUE(exactMatch)) {
        stop(
          "None of the provided features had matching",
          " items in '", by, "' within 'x'. ",
          "Check the spelling or try setting",
          " 'exactMatch = FALSE'."
        )
      } else {
        stop(
          "None of the provided features had matching",
          " items in '", by, "' within 'x'. ",
          "Check the spelling and make sure 'by' is set",
          " to the appropriate place in 'x'."
        )
      }
    }
    warning(
      "The following features were not present in 'x': ",
      paste(features[which(is.na(featuresIndices))],
        collapse = ","
      )
    )
  }

  if (isTRUE(removeNA)) {
    featuresIndices <- featuresIndices[!is.na(featuresIndices)]
  }
  return(featuresIndices)
}
campbio/celda documentation built on April 5, 2024, 11:47 a.m.