define_signif_tumor_subclusters <- function(infercnv_obj,
p_val=0.1,
k_nn=20,
leiden_method=c("PCA", "simple"),
leiden_function = c("CPM", "modularity"),
leiden_resolution="auto",
leiden_method_per_chr=c("simple", "PCA"),
leiden_function_per_chr = c("modularity", "CPM"),
leiden_resolution_per_chr = 1,
hclust_method="ward.D2",
cluster_by_groups=TRUE,
partition_method="leiden",
per_chr_hmm_subclusters=FALSE,
per_chr_hmm_subclusters_references=FALSE,
z_score_filter=0.8,
restrict_to_DE_genes=FALSE)
{
# leiden_method=c("simple", "per_chr", "intersect_chr", "per_select_chr", "PCA", "seurat2")
leiden_method = match.arg(leiden_method)
leiden_method_per_chr = match.arg(leiden_method_per_chr)
leiden_function = match.arg(leiden_function)
leiden_function_per_chr = match.arg(leiden_function_per_chr)
flog.info(sprintf("define_signif_tumor_subclusters(p_val=%g", p_val))
# tumor_groups <- infercnv_obj@observation_grouped_cell_indices
res = list()
if (restrict_to_DE_genes) {
normal_expr_data = infercnv_obj@expr.data[, unlist(infercnv_obj@reference_grouped_cell_indices) ]
}
tumor_groups = list()
if (cluster_by_groups) {
tumor_groups <- c(infercnv_obj@observation_grouped_cell_indices, infercnv_obj@reference_grouped_cell_indices)
}
else {
tumor_groups <- c(list(all_observations=unlist(infercnv_obj@observation_grouped_cell_indices, use.names=FALSE)), infercnv_obj@reference_grouped_cell_indices)
}
outliers = NULL
# if (partition_method == "leiden" && grepl("filter", leiden_method, fixed=TRUE)) {
if (z_score_filter > 0 && length(infercnv_obj@reference_grouped_cell_indices) > 0) {
ref_matrix = infercnv_obj@expr.data[, unlist(infercnv_obj@reference_grouped_cell_indices), drop=FALSE]
z_score = (ref_matrix - mean(ref_matrix))/sd(ref_matrix)
outliers = which(apply(abs(z_score), 1, mean) >= 0.8)
if (!is.null(outliers)) {
# if (mask_zscore) { ## option to add to handle if to completely remove the outliers from the analysis, or add alternate option to assign them a value from neighbor genes
# infercnv_obj@gene_order = infercnv_obj@gene_order[-outliers, , drop=FALSE]
# infercnv_obj@expr.data = infercnv_obj@expr.data[-outliers, , drop=FALSE]
# }
# else {
gene_order = infercnv_obj@gene_order[-outliers, , drop=FALSE]
expr.data = infercnv_obj@expr.data[-outliers, , drop=FALSE]
# }
}
else {
# chrs = infercnv_obj@gene_order$chr
gene_order = infercnv_obj@gene_order
expr.data = infercnv_obj@expr.data
}
# leiden_method = "seurat" leiden_method[1:(length(leiden_method) - 7)]
rm(ref_matrix)
rm(z_score)
}
else {
gene_order = infercnv_obj@gene_order
expr.data = infercnv_obj@expr.data
}
for (tumor_group in names(tumor_groups)) {
flog.info(sprintf("define_signif_tumor_subclusters(), tumor: %s", tumor_group))
tumor_group_idx <- tumor_groups[[ tumor_group ]]
names(tumor_group_idx) <- colnames(expr.data[,tumor_group_idx])
tumor_expr_data <- expr.data[,tumor_group_idx, drop=FALSE]
if (restrict_to_DE_genes) {
p_vals <- .find_DE_stat_significance(normal_expr_data, tumor_expr_data)
DE_gene_idx = which(p_vals < p_val)
tumor_expr_data = tumor_expr_data[DE_gene_idx, , drop=FALSE]
}
if (partition_method == "leiden") {
# if (!is.null(outliers)) {
# tumor_expr_data = tumor_expr_data[-outliers, , drop=FALSE]
# }
#tumor_subcluster_info <- .single_tumor_leiden_subclustering(tumor_group=tumor_group, tumor_group_idx=tumor_group_idx, tumor_expr_data=tumor_expr_data, chrs=infercnv_obj@gene_order$chr, k_nn=k_nn, leiden_resolution=leiden_resolution, leiden_method=leiden_method, select_chr=select_chr, hclust_method=hclust_method)
tumor_subcluster_info <- .single_tumor_leiden_subclustering(tumor_group=tumor_group,
tumor_group_idx=tumor_group_idx,
tumor_expr_data=tumor_expr_data,
k_nn=k_nn,
leiden_resolution=leiden_resolution,
leiden_method=leiden_method,
leiden_function=leiden_function,
hclust_method=hclust_method
)
}
else {
tumor_subcluster_info <- .single_tumor_subclustering(tumor_name=tumor_group,
tumor_group_idx=tumor_group_idx,
tumor_expr_data=tumor_expr_data,
p_val=p_val,
hclust_method=hclust_method,
partition_method=partition_method
)
}
res$hc[[tumor_group]] <- tumor_subcluster_info$hc
res$subclusters[[tumor_group]] <- tumor_subcluster_info$subclusters
}
infercnv_obj@tumor_subclusters <- res
if (per_chr_hmm_subclusters && partition_method == "leiden") {
if (!per_chr_hmm_subclusters_references) {
if (cluster_by_groups) {
tumor_groups <- infercnv_obj@observation_grouped_cell_indices
}
else {
tumor_groups <- list(all_observations=unlist(infercnv_obj@observation_grouped_cell_indices, use.names=FALSE))
}
}
# else use the same as for regular subclusters
subclusters_per_chr <- .whole_dataset_leiden_subclustering_per_chr(expr_data = expr.data,
tumor_groups = tumor_groups,
chrs = gene_order$chr,
k_nn = k_nn,
leiden_resolution = leiden_resolution_per_chr,
leiden_method = leiden_method_per_chr,
leiden_function = leiden_function_per_chr
)
if (!per_chr_hmm_subclusters_references) {
for (i in names(subclusters_per_chr)) {
subclusters_per_chr[[i]] = c(subclusters_per_chr[[i]], infercnv_obj@reference_grouped_cell_indices)
}
}
}
else {
subclusters_per_chr = NULL
}
if (! is.null(infercnv_obj@.hspike)) {
flog.info("-mirroring for hspike")
# partition method is set to none because the hspike does not need subclustering, which might lead to reducing the expected noise level when looking at the observations later
infercnv_obj@.hspike = define_signif_tumor_subclusters(infercnv_obj@.hspike,
cluster_by_groups = TRUE,
partition_method = "none")[[1]]
# infercnv_obj@.hspike = define_signif_tumor_subclusters(infercnv_obj@.hspike,
# p_val=p_val,
# k_nn=k_nn,
# leiden_resolution=leiden_resolution,
# leiden_method="simple",
# hclust_method=hclust_method,
# cluster_by_groups=cluster_by_groups,
# partition_method=partition_method,
# per_chr_hmm_subclusters=FALSE,
# restrict_to_DE_genes=restrict_to_DE_genes)[[1]]
}
#browser()
# return(infercnv_obj)
return(list(infercnv_obj, subclusters_per_chr))
}
.single_tumor_subclustering <- function(tumor_name, tumor_group_idx, tumor_expr_data, p_val, hclust_method,
partition_method=c('qnorm', 'pheight', 'qgamma', 'shc', 'none')
) {
partition_method = match.arg(partition_method)
tumor_subcluster_info = list()
if (ncol(tumor_expr_data) > 2) {
hc <- hclust(parallelDist(t(tumor_expr_data), threads=infercnv.env$GLOBAL_NUM_THREADS), method=hclust_method)
tumor_subcluster_info$hc = hc
heights = hc$height
grps <- NULL
if (partition_method == 'pheight') {
cut_height = p_val * max(heights)
flog.info(sprintf("cut height based on p_val(%g) = %g and partition_method: %s", p_val, cut_height, partition_method))
grps <- cutree(hc, h=cut_height) # will just be one cluster if height > max_height
} else if (partition_method == 'qnorm') {
mu = mean(heights)
sigma = sd(heights)
cut_height = qnorm(p=1-p_val, mean=mu, sd=sigma)
flog.info(sprintf("cut height based on p_val(%g) = %g and partition_method: %s", p_val, cut_height, partition_method))
grps <- cutree(hc, h=cut_height) # will just be one cluster if height > max_height
} else if (partition_method == 'qgamma') {
# library(fitdistrplus)
gamma_fit = fitdist(heights, 'gamma')
shape = gamma_fit$estimate[1]
rate = gamma_fit$estimate[2]
cut_height=qgamma(p=1-p_val, shape=shape, rate=rate)
flog.info(sprintf("cut height based on p_val(%g) = %g and partition_method: %s", p_val, cut_height, partition_method))
grps <- cutree(hc, h=cut_height) # will just be one cluster if height > max_height
#} else if (partition_method == 'shc') {
#
# grps <- .get_shc_clusters(tumor_expr_data, hclust_method, p_val)
} else if (partition_method == 'none') {
grps <- cutree(hc, k=1)
} else {
stop("Error, not recognizing parition_method")
}
# cluster_ids = unique(grps)
# flog.info(sprintf("cut tree into: %g groups", length(cluster_ids)))
tumor_subcluster_info$subclusters = list()
ordered_idx = tumor_group_idx[hc$order]
s = split(grps,grps)
flog.info(sprintf("cut tree into: %g groups", length(s)))
start_idx = 1
# for (g in cluster_ids) {
for (g in names(s)) {
split_subcluster = paste0(tumor_name, "_s", g)
flog.info(sprintf("-processing %s,%s", tumor_name, split_subcluster))
# subcluster_indices = tumor_group_idx[which(grps == g)]
end_idx = start_idx + length(s[[g]]) - 1
subcluster_indices = tumor_group_idx[hc$order[start_idx:end_idx]]
start_idx = end_idx + 1
tumor_subcluster_info$subclusters[[ split_subcluster ]] = subcluster_indices
}
}
else {
tumor_subcluster_info$hc = NULL # can't make hc with a single element, even manually, need to have workaround in plotting step
tumor_subcluster_info$subclusters[[paste0(tumor_name, "_s1") ]] = tumor_group_idx
}
return(tumor_subcluster_info)
}
#.get_shc_clusters <- function(tumor_expr_data, hclust_method, p_val) {
#
# library(sigclust2)
#
# flog.info(sprintf("defining groups using shc, hclust_method: %s, p_val: %g", hclust_method, p_val))
#
# shc_result = sigclust2::shc(t(tumor_expr_data), metric='euclidean', linkage=hclust_method, alpha=p_val)
#
# cluster_idx = which(shc_result$p_norm <= p_val)
#
# grps = rep(1, ncol(tumor_expr_data))
# names(grps) <- colnames(tumor_expr_data)
#
# counter = 1
# for (cluster_id in cluster_idx) {
# labelsA = unlist(shc_result$idx_hc[cluster_id,1])
#
# labelsB = unlist(shc_result$idx_hc[cluster_id,2])
#
# counter = counter + 1
# grps[labelsB] <- counter
# }
#
# return(grps)
#}
#' @description Formats the data and sends it for plotting.
#'
#' @title Plot a heatmap of the data in the infercnv object with the subclusters being displayed as annotations.
#'
#' @param infercnv_obj infercnv object
#' @param out_dir Directory in which to output.
#' @param output_filename Filename to save the figure to.
#'
#' @return infercnv_obj the modified infercnv object that was plotted where subclusters are assigned as annotation groups
#'
#' @export
#'
#' @examples
#' # data(infercnv_data_example)
#' # data(infercnv_annots_example)
#' # data(infercnv_genes_example)
#'
#' # infercnv_object_example <- infercnv::CreateInfercnvObject(raw_counts_matrix=infercnv_data_example,
#' # gene_order_file=infercnv_genes_example,
#' # annotations_file=infercnv_annots_example,
#' # ref_group_names=c("normal"))
#'
#' # infercnv_object_example <- infercnv::run(infercnv_object_example,
#' # cutoff=1,
#' # out_dir=tempfile(),
#' # cluster_by_groups=TRUE,
#' # denoise=TRUE,
#' # HMM=FALSE,
#' # num_threads=2,
#' # no_plot=TRUE)
#'
#' data(infercnv_object_example)
#'
#' plot_subclusters(infercnv_object_example,
#' out_dir=tempfile(),
#' output_filename="subclusters_as_annotations"
#' )
#'
plot_subclusters = function(infercnv_obj, out_dir, output_filename = "subcluster_as_annotations") {
subcluster_obj = infercnv_obj
subcluster_obj@reference_grouped_cell_indices = list()
for (grp in names(infercnv_obj@reference_grouped_cell_indices)) {
for (grp2 in names(infercnv_obj@tumor_subclusters$subclusters[[grp]])) {
subcluster_obj@reference_grouped_cell_indices[[grp2]] = infercnv_obj@tumor_subclusters$subclusters[[grp]][[grp2]]
}
}
subcluster_obj@observation_grouped_cell_indices = list()
for (grp in c(names(infercnv_obj@observation_grouped_cell_indices), "all_observations")) {
for (grp2 in names(infercnv_obj@tumor_subclusters$subclusters[[grp]])) {
subcluster_obj@observation_grouped_cell_indices[[grp2]] = infercnv_obj@tumor_subclusters$subclusters[[grp]][[grp2]]
}
}
subcluster_obj@tumor_subclusters = NULL
plot_cnv(subcluster_obj,
cluster_by_groups=TRUE,
output_filename = output_filename,
out_dir=out_dir,
write_expr_matrix=FALSE)
return(subcluster_obj)
}
.find_DE_stat_significance <- function(normal_matrix, tumor_matrix) {
run_t_test<- function(idx) {
vals1 = unlist(normal_matrix[idx,,drop=TRUE])
vals2 = unlist(tumor_matrix[idx,,drop=TRUE])
## useful way of handling tests that may fail:
## https://stat.ethz.ch/pipermail/r-help/2008-February/154167.html
res = try(t.test(vals1, vals2), silent=TRUE)
if (is(res, "try-error")) return(NA) else return(res$p.value)
}
pvals = sapply(seq(nrow(normal_matrix)), run_t_test)
return(pvals)
}
##### Below is deprecated.... use inferCNV_tumor_subclusters.random_smoothed_trees
## Random Trees
.partition_by_random_trees <- function(tumor_name, tumor_expr_data, hclust_method, p_val) {
grps <- rep(sprintf("%s.%d", tumor_name, 1), ncol(tumor_expr_data))
names(grps) <- colnames(tumor_expr_data)
grps <- .single_tumor_subclustering_recursive_random_trees(tumor_expr_data, hclust_method, p_val, grps)
return(grps)
}
.single_tumor_subclustering_recursive_random_trees <- function(tumor_expr_data, hclust_method, p_val, grps.adj, min_cluster_size_recurse=10) {
tumor_clade_name = unique(grps.adj[names(grps.adj) %in% colnames(tumor_expr_data)])
message("unique tumor clade name: ", tumor_clade_name)
if (length(tumor_clade_name) > 1) {
stop("Error, found too many names in current clade")
}
hc <- hclust(parallelDist(t(tumor_expr_data), threads=infercnv.env$GLOBAL_NUM_THREADS), method=hclust_method)
rand_params_info = .parameterize_random_cluster_heights(tumor_expr_data, hclust_method)
h_obs = rand_params_info$h_obs
h = h_obs$height
max_height = rand_params_info$max_h
max_height_pval = 1
if (max_height > 0) {
## important... as some clades can be fully collapsed (all identical entries) with zero heights for all
e = rand_params_info$ecdf
max_height_pval = 1- e(max_height)
}
#message(sprintf("Lengths(h): %s", paste(h, sep=",", collapse=",")))
#message(sprintf("max_height_pval: %g", max_height_pval))
if (max_height_pval <= p_val) {
## keep on cutting.
cut_height = mean(c(h[length(h)], h[length(h)-1]))
message(sprintf("cutting at height: %g", cut_height))
grps = cutree(h_obs, h=cut_height)
print(grps)
uniqgrps = unique(grps)
message("unique grps: ", paste0(uniqgrps, sep=",", collapse=","))
for (grp in uniqgrps) {
grp_idx = which(grps==grp)
message(sprintf("grp: %s contains idx: %s", grp, paste(grp_idx,sep=",", collapse=",")))
df = tumor_expr_data[,grp_idx,drop=FALSE]
## define subset.
subset_cell_names = colnames(df)
subset_clade_name = sprintf("%s.%d", tumor_clade_name, grp)
grps.adj[names(grps.adj) %in% subset_cell_names] <- subset_clade_name
if (length(grp_idx) > min_cluster_size_recurse) {
## recurse
grps.adj <- .single_tumor_subclustering_recursive_random_trees(tumor_expr_data=df,
hclust_method=hclust_method,
p_val=p_val,
grps.adj)
} else {
message("paritioned cluster size too small to recurse further")
}
}
} else {
message("No cluster pruning: ", tumor_clade_name)
}
return(grps.adj)
}
.parameterize_random_cluster_heights <- function(expr_matrix, hclust_method, plot=TRUE) {
## inspired by: https://www.frontiersin.org/articles/10.3389/fgene.2016.00144/full
t_tumor.expr.data = t(expr_matrix) # cells as rows, genes as cols
d = parallelDist(t_tumor.expr.data, threads=infercnv.env$GLOBAL_NUM_THREADS)
h_obs = hclust(d, method=hclust_method)
# permute by chromosomes
permute_col_vals <- function(df) {
num_cells = nrow(df)
for (i in seq(ncol(df) ) ) {
df[, i] = df[sample(x=seq_len(num_cells), size=num_cells, replace=FALSE), i]
}
df
}
h_rand_ex = NULL
max_rand_heights = c()
num_rand_iters=100
for (i in seq_len(num_rand_iters)) {
#message(sprintf("iter i:%d", i))
rand.tumor.expr.data = permute_col_vals(t_tumor.expr.data)
rand.dist = parallelDist(rand.tumor.expr.data, threads=infercnv.env$GLOBAL_NUM_THREADS)
h_rand <- hclust(rand.dist, method=hclust_method)
h_rand_ex = h_rand
max_rand_heights = c(max_rand_heights, max(h_rand$height))
}
h = h_obs$height
max_height = max(h)
message(sprintf("Lengths for original tree branches (h): %s", paste(h, sep=",", collapse=",")))
message(sprintf("Max height: %g", max_height))
message(sprintf("Lengths for max heights: %s", paste(max_rand_heights, sep=",", collapse=",")))
e = ecdf(max_rand_heights)
pval = 1- e(max_height)
message(sprintf("pval: %g", pval))
params_list <- list(h_obs=h_obs,
max_h=max_height,
rand_max_height_dist=max_rand_heights,
ecdf=e,
h_rand_ex = h_rand_ex
)
if (plot) {
.plot_tree_height_dist(params_list)
}
return(params_list)
}
.plot_tree_height_dist <- function(params_list, plot_title='tree_heights') {
mf = par(mfrow=(c(3,1)))
## density plot
rand_height_density = density(params_list$rand_max_height_dist)
xlim=range(params_list$max_h, rand_height_density$x)
ylim=range(rand_height_density$y)
plot(rand_height_density, xlim=xlim, ylim=ylim, main=paste(plot_title, "density"))
abline(v=params_list$max_h, col='red')
## plot the clustering
h_obs = params_list$h_obs
h_obs$labels <- NULL #because they're too long to display
plot(h_obs)
## plot a random example:
h_rand_ex = params_list$h_rand_ex
h_rand_ex$labels <- NULL
plot(h_rand_ex)
par(mf)
}
.get_tree_height_via_ecdf <- function(p_val, params_list) {
h = quantile(params_list$ecdf, probs=1-p_val)
return(h)
}
.single_tumor_leiden_subclustering <- function(tumor_group, tumor_group_idx, tumor_expr_data, k_nn, leiden_resolution, leiden_method, leiden_function, hclust_method) {
res = list()
res$subclusters = list()
if (length(tumor_group_idx) < 3) {
flog.info(paste0("Too few cells in group ", tumor_group, " for any (sub)clustering. Keeping as is."))
res$hc = NULL # can't make hc with a single element, even manually, need to have workaround in plotting step
res$subclusters[[paste0(tumor_group, "_s1") ]] = tumor_group_idx
return(res)
}
if (k_nn >= length(tumor_group_idx)) {
flog.info(paste0("Less cells in group ", tumor_group, " than k_nn setting. Keeping as a single subcluster."))
res$subclusters[[ tumor_group ]] = tumor_group_idx
res$hc = hclust(parallelDist(t(tumor_expr_data), threads=infercnv.env$GLOBAL_NUM_THREADS), method=hclust_method)
return(res)
}
used_leiden_resolution = 0
if (leiden_resolution == "auto") {
used_leiden_resolution = (11.98/ncol(tumor_expr_data))^(1/1.165)
flog.info(sprintf("Setting auto leiden resolution for %s to %g", tumor_group, used_leiden_resolution))
}
else {
used_leiden_resolution = leiden_resolution
}
if (leiden_method == "PCA") {
partition = .leiden_seurat_preprocess_routine(expr_data=tumor_expr_data, k_nn=k_nn, resolution_parameter=used_leiden_resolution, objective_function=leiden_function)
}
else { # "simple"
partition = .leiden_simple_snn(tumor_expr_data, k_nn, used_leiden_resolution, leiden_function)
}
tmp_full_phylo = NULL
added_height = 1
for (i in names(sort(table(partition), decreasing=TRUE))) { # reverse sort of table() is there to make sure we start with the biggest cluster to avoid looking at a one cell cluster since it cannot be added to a phylo object
res$subclusters[[ paste(tumor_group, i, sep="_s") ]] = tumor_group_idx[which(partition == i)] # this should transfer names as well
# names(res$subclusters[[ paste(tumor_group, i, sep="_s") ]]) = tumor_group_idx[which(partition == i)]
if (length(which(partition == i)) >= 2) {
tmp_phylo = as.phylo(hclust(parallelDist(t(tumor_expr_data[, which(partition == i), drop=FALSE]), threads=infercnv.env$GLOBAL_NUM_THREADS), method=hclust_method))
if (is.null(tmp_full_phylo)) {
tmp_full_phylo = tmp_phylo
}
else {
height1 = get.rooted.tree.height(tmp_phylo)
height2 = get.rooted.tree.height(tmp_full_phylo)
if (height1 == height2) {
tmp_phylo$root.edge = added_height
tmp_full_phylo$root.edge = added_height
}
else if (height1 > height2) {
tmp_phylo$root.edge = added_height
tmp_full_phylo$root.edge = height1 - height2 + added_height
}
else { # height2 > height1
tmp_phylo$root.edge = height2 - height1 + added_height
tmp_full_phylo$root.edge = added_height
}
tmp_full_phylo = tmp_phylo + tmp_full_phylo # x + y is a shortcut for: bind.tree(x, y, position = if (is.null(x$root.edge)) 0 else x$root.edge)
}
}
else { # ==1
tmp_full_phylo = add_single_branch_to_phylo(tmp_full_phylo, colnames(tumor_expr_data)[which(partition == i)])
}
}
# as.hclust(merge(merge(as.dendrogram(subclust_obj@tumor_subclusters$hc$`all_observations`), as.dendrogram(subclust_obj@tumor_subclusters$hc$`Microglia/Macrophage`)), as.dendrogram(subclust_obj@tumor_subclusters$hc$`Oligodendrocytes (non-malignant)`)))
res$hc = as.hclust(tmp_full_phylo)
return(res)
}
.whole_dataset_leiden_subclustering_per_chr <- function(expr_data, tumor_groups, chrs, k_nn, leiden_resolution, leiden_method, leiden_function) {
# z score filtering over all the data based on refs, done in calling method
subclusters_per_chr = list()
for (c in levels(chrs)) {
subclusters_per_chr[[c]] = list()
for (tumor_group in names(tumor_groups)) {
if (!(c %in% unique(chrs))) {
subclusters_per_chr[[c]][[tumor_group]] = seq_len(ncol(expr_data))
names(subclusters_per_chr[[c]][[tumor_group]]) = colnames(expr_data)[seq_len(ncol(expr_data))] # the [] shouldn't matter
}
else {
c_data = expr_data[which(chrs == c), tumor_groups[[tumor_group]], drop=FALSE]
if (ncol(c_data) < 3) {
flog.info(paste0("Too few cells in group ", tumor_group, " for any per chr (sub)clustering. Keeping as is."))
subclusters_per_chr[[c]][[tumor_group]] = tumor_groups[[tumor_group]]
}
else if (k_nn >= ncol(c_data)) {
flog.info(paste0("Less cells in group ", tumor_group, " than k_nn setting. Keeping as a single per chr subcluster."))
subclusters_per_chr[[c]][[tumor_group]] = tumor_groups[[tumor_group]]
}
else {
used_leiden_resolution = 0
if (leiden_resolution == "auto") {
used_leiden_resolution = (11.98/ncol(c_data))^(1/1.165)
flog.info(sprintf("Setting auto leiden resolution for %s to %g", tumor_group, used_leiden_resolution))
}
else {
used_leiden_resolution = leiden_resolution
}
if (leiden_method == "PCA") {
partition = .leiden_seurat_preprocess_routine(expr_data=c_data, k_nn=k_nn, resolution_parameter=used_leiden_resolution, objective_function=leiden_function)
}
else { # "simple"
partition = .leiden_simple_snn(expr_data=c_data, k_nn=k_nn, resolution_parameter=used_leiden_resolution, objective_function=leiden_function)
}
# no HClust on these subclusters as they may mix both ref and obs cells
for (i in unique(partition[grouping(partition)])) { # grouping() is there to make sure we do not start looking at a one cell cluster since it cannot be added to a phylo object
subclusters_per_chr[[c]][[ paste(tumor_group, i, sep="_s") ]] = tumor_groups[[tumor_group]][which(partition == i)]
# names(subclusters_per_chr[[c]][[ paste(tumor_group, i, sep="_s") ]]) = colnames(c_data)[which(partition == i)]
}
}
}
}
}
return(subclusters_per_chr)
}
.leiden_seurat_preprocess_routine <- function(expr_data, k_nn, resolution_parameter, objective_function) {
seurat_obs = CreateSeuratObject(expr_data, "assay" = "infercnv", project = "infercnv", names.field = 1)
# seurat_obs = FindVariableFeatures(seurat_obs) # , selection.method = "vst", nfeatures = 2000
seurat_obs = tryCatch(FindVariableFeatures(seurat_obs),
warning=function(w) {
flog.info(paste0("Got a warning:\n\t", w$message, "\n\nFalling back to simple Leiden clustering for this chromosome.\n"))
})
if ("Seurat" %in% is(seurat_obs)) {
all.genes <- rownames(seurat_obs)
seurat_obs <- ScaleData(seurat_obs, features = all.genes, layer = "counts")
seurat_obs = RunPCA(seurat_obs, npcs=10) # only settings dims to 10 since FindNeighbors only uses 1:10 by default, if needed, could add optional settings for npcs and dims
seurat_obs = FindNeighbors(seurat_obs, k.param=k_nn)
graph_obj = graph_from_adjacency_matrix(seurat_obs@graphs$infercnv_snn, mode="min", weighted=TRUE)
partition_obj = cluster_leiden(graph_obj, resolution_parameter=resolution_parameter, objective_function=objective_function)
partition = partition_obj$membership
}
else {
partition = .leiden_simple_snn(expr_data, k_nn, resolution_parameter, objective_function)
}
return(partition)
}
.leiden_simple_snn <- function(expr_data, k_nn, resolution_parameter, objective_function) {
snn <- nn2(t(expr_data), k=k_nn)$nn.idx
sparse_adjacency_matrix <- sparseMatrix(
i = rep(seq_len(ncol(expr_data)), each=k_nn),
j = t(snn),
x = rep(1, ncol(expr_data) * k_nn),
dims = c(ncol(expr_data), ncol(expr_data)),
dimnames = list(colnames(expr_data), colnames(expr_data))
)
graph_obj = graph_from_adjacency_matrix(sparse_adjacency_matrix, mode="undirected")
partition_obj = cluster_leiden(graph_obj, resolution_parameter=resolution_parameter, objective_function=objective_function)
partition = partition_obj$membership
return(partition)
}
add_single_branch_to_phylo = function(in_tree, label) {
in_root_height = get.rooted.tree.height(in_tree)
n_tips = length(in_tree$tip.label)
tip_nodes = which(in_tree$edge <= n_tips)
internal_nodes = which(in_tree$edge > n_tips)
# update the existing list of internal node splits to make space for the new top branching
in_tree$edge[tip_nodes] = in_tree$edge[tip_nodes] + 1
in_tree$edge[internal_nodes] = in_tree$edge[internal_nodes] + 2
# update the existing list of internal nodes to add the new top branching
in_tree$edge = rbind(c(n_tips + 2, n_tips + 3), in_tree$edge)
in_tree$edge = rbind(c(n_tips + 2, 1), in_tree$edge)
# update the internal nodes count
in_tree$Nnode = in_tree$Nnode + 1
# add the heights of the 2 new branches from the new top branching
root_height = 1
if (!is.null(in_tree$root.edge)) {
root_height = in_tree$root.edge
}
in_tree$edge.length = c(in_root_height + root_height, root_height, in_tree$edge.length)
# update the list of tip labels
in_tree$tip.label = c(label, in_tree$tip.label)
return(in_tree)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.