#' @title Estimate A/B compartments from methylation array data
#'
#' @description
#' \code{getArrayABsignal} returns estimated A/B compartments from methylation array data.
#'
#' @param obj Input SummarizedExperiment object
#' @param res Compartment resolution in bp
#' @param parallel Whether to run samples in parallel
#' @param chr What chromosome to work on (leave as NULL to run on all chromosomes)
#' @param targets Samples/cells to shrink towards
#' @param preprocess Whether to preprocess the arrays prior to compartment inference
#' @param cores How many cores to use when running samples in parallel
#' @param bootstrap Whether we should perform bootstrapping of inferred compartments
#' @param num.bootstraps How many bootstraps to run
#' @param genome What genome to work on ("hg19", "hg38", "mm9", "mm10")
#' @param other Another arbitrary genome to compute compartments on
#' @param array.type What type of array is this ("hm450", "EPIC")
#' @param group Whether to treat this as a group set of samples
#' @param boot.parallel Whether to run the bootstrapping in parallel
#' @param boot.cores How many cores to use for the bootstrapping
#'
#' @return A RaggedExperiment of inferred compartments
#' @import SummarizedExperiment
#' @import parallel
#' @import RaggedExperiment
#' @export
#'
#' @examples
#'
#' data("meth_array_450k_chr14", package = "compartmap")
#' array_compartments <- getArrayABsignal(array.data.chr14, parallel=FALSE, chr="chr14", bootstrap=FALSE, genome="hg19", array.type="hm450")
getArrayABsignal <- function(obj, res = 1e6, parallel = TRUE, chr = NULL,
targets = NULL, preprocess = TRUE, cores = 2,
bootstrap = TRUE, num.bootstraps = 1000,
genome = c("hg19", "hg38", "mm9", "mm10"),
other = NULL, array.type = c("hm450", "EPIC"),
group = FALSE, boot.parallel = TRUE, boot.cores = 2) {
if (length(seqinfo(rowRanges(obj))) == 0) {
message("The SummarizedExperiment you have provided has no coordinates.")
message("Compartment extraction will fail.")
stop("Please provide rowRanges with genomic coordinates for the object.")
}
#preprocess the arrays
if (preprocess) {
obj <- preprocessArrays(obj = obj,
genome = genome, other = other,
array.type = array.type)
}
# critical check if imputation was _not_ done
# to send things back to beta land
is.beta <- ifelse(min(assays(obj)$Beta, na.rm = TRUE) < 0, FALSE, TRUE)
if (!is.beta) {
#send things back to beta land
assays(obj)$Beta <- fexpit(assays(obj)$Beta)
}
#gather the chromosomes we are working on
if (is.null(chr)) {
message("Assuming we want to process all chromosomes.")
#get what chromosomes we want
chr <- getChrs(obj)
}
#get the column names
if (is.null(colnames(obj))) stop("colnames needs to be sample names.")
columns <- colnames(obj)
names(columns) <- columns
#precompute global means
prior.means <- getGlobalMeans(obj = obj, targets = targets, assay = "array")
if (bootstrap) {
message("Pre-computing the bootstrap global means.")
bmeans <- precomputeBootstrapMeans(obj = obj, targets = targets, num.bootstraps = num.bootstraps,
assay = "array", parallel = parallel, num.cores = cores)
}
if (parallel & isFALSE(group)) {
array.compartments <- mclapply(columns, function(s) {
obj.sub <- obj[,s]
message("Working on ", s)
sort(unlist(as(lapply(chr, function(c) .arrayCompartments(obj.sub, obj, res = res,
chr = c, targets = targets, genome = genome,
bootstrap = bootstrap, prior.means = prior.means,
num.bootstraps = num.bootstraps, parallel = boot.parallel,
cores = boot.cores, group = group, bootstrap.means = bmeans)), "GRangesList")))
}, mc.cores = cores, mc.preschedule = F)
}
if (!parallel & isFALSE(group)) {
array.compartments <- lapply(columns, function(s) {
obj.sub <- obj[,s]
message("Working on ", s)
sort(unlist(as(lapply(chr, function(c) .arrayCompartments(obj.sub, obj, res = res,
chr = c, targets = targets, genome = genome,
bootstrap = bootstrap, prior.means = prior.means,
num.bootstraps = num.bootstraps, parallel = boot.parallel,
cores = boot.cores, group = group, bootstrap.means = bmeans)), "GRangesList")))
})
}
if (parallel & isTRUE(group)) {
array.compartments <- sort(unlist(as(mclapply(chr, function(c) {
.arrayCompartments(obj, obj, res = res,
chr = c, targets = targets, genome = genome,
bootstrap = bootstrap,num.bootstraps = num.bootstraps, prior.means = prior.means,
parallel = boot.parallel, cores = boot.cores, group = group, bootstrap.means = bmeans)},
mc.cores = cores), "GRangesList")))
}
if (!parallel & isTRUE(group)) {
array.compartments <- sort(unlist(as(lapply(chr, function(c) {
.arrayCompartments(obj, obj, res = res,
chr = c, targets = targets, genome = genome,
bootstrap = bootstrap, num.bootstraps = num.bootstraps, prior.means = prior.means,
parallel = boot.parallel, cores = boot.cores, group = group, bootstrap.means = bmeans)}),
"GRangesList")))
}
#if group-level treat a little differently
if (group) {
return(array.compartments)
}
#convert to GRangesList
array.compartments <- as(array.compartments, "CompressedGRangesList")
#return as a RaggedExperiment
return(RaggedExperiment(array.compartments, colData = colData(obj)))
}
#' Preprocess arrays for compartment inference
#'
#' @name preprocessArrays
#'
#' @param obj Input SummarizedExperiment
#' @param genome What genome are we working on ("hg19", "hg38", "mm9", "mm10")
#' @param other Another arbitrary genome to compute compartments on
#' @param array.type What type of array is this ("hm450", "EPIC")
#'
#' @return A preprocessed SummarizedExperiment to compute compartments
#' @import SummarizedExperiment
#'
#' @examples
#' if (require(minfiData)) {
#' grSet <- mapToGenome(ratioConvert(preprocessNoob(RGsetEx.sub)))
#' preprocessArrays(grSet)
#' }
#'
#' @export
preprocessArrays <- function(obj,
genome = c("hg19", "hg38", "mm9", "mm10"),
other = NULL, array.type = c("hm450", "EPIC")) {
#make sure the input is sane
if (!checkAssayType(obj)) stop("Input needs to be a SummarizedExperiment")
#what genome do we have
genome <- match.arg(genome)
#subset the array to open sea CpGs
obj.opensea <- filterOpenSea(obj, genome = genome, other = other)
#convert things to M-values
#check the names of the assays
if (!any(getAssayNames(obj.opensea) %in% c("Beta"))) {
stop("The assays slot should contain 'Beta' for arrays.")
}
#convert to M-values if beta values given
#this should be default but allows handling if given M-values in Beta slot
is.beta <- ifelse(min(assays(obj)$Beta, na.rm = TRUE) < 0, FALSE, TRUE)
if (is.beta) {
message("Converting to squeezed M-values.")
assays(obj.opensea)$Beta <- flogit(assays(obj.opensea)$Beta)
}
#impute missing values if possible
if (any(is.na(getBeta(obj.opensea)))) {
message("Imputing missing values.")
obj.opensea <- imputeKNN(obj.opensea, assay = "array")
}
return(obj.opensea)
}
#worker function
.arrayCompartments <- function(obj, original.obj, res = 1e6, chr = NULL,
targets = NULL,
genome = c("hg19", "hg38", "mm9", "mm10"),
prior.means = NULL, bootstrap = TRUE,
num.bootstraps = 1000, parallel = FALSE,
cores = 2, group = FALSE, bootstrap.means = NULL) {
#this is the main analysis function for computing compartments from arrays
#make sure the input is sane
if (!checkAssayType(obj)) stop("Input needs to be a SummarizedExperiment")
#what genome do we have
genome <- match.arg(genome)
#set the parallel back-end core number
if (parallel) options(mc.cores = cores)
#update
message("Computing compartments for ", chr)
obj <- keepSeqlevels(obj, chr, pruning.mode = "coarse")
original.obj <- keepSeqlevels(original.obj, chr, pruning.mode = "coarse")
#take care of the global means
if (!is.null(prior.means)) {
#this assumes that we've alread computed the global means
pmeans <- as(prior.means, "GRanges")
pmeans <- keepSeqlevels(pmeans, chr, pruning.mode = "coarse")
#go back to a matrix
prior.means <- as(pmeans, "matrix")
colnames(prior.means) <- "globalMean"
}
#get the shrunken bins
obj.bins <- shrinkBins(obj, original.obj, prior.means=prior.means, chr = chr,
res = res, targets = targets, assay = "array",
genome = genome, jse = TRUE)
#compute correlations
if (group) obj.cor <- getCorMatrix(obj.bins, squeeze = FALSE)
if (isFALSE(group)) obj.cor <- getCorMatrix(obj.bins, squeeze = TRUE)
if (any(is.na(obj.cor$binmat.cor))) {
obj.cor$gr$pc <- matrix(rep(NA, nrow(obj.cor$binmat.cor)))
obj.svd <- obj.cor$gr
} else {
#compute SVD of correlation matrix
obj.svd <- getABSignal(obj.cor, assay = "array")
}
if (isFALSE(bootstrap)) return(obj.svd)
#bootstrap the estimates
#always compute confidence intervals too
#take care of the global means
if (bootstrap) {
#this assumes that we've alread computed the global means
bmeans <- as(bootstrap.means, "GRanges")
bmeans <- keepSeqlevels(bmeans, chr, pruning.mode = "coarse")
#go back to a matrix
bmeans <- as(bmeans, "matrix")
colnames(bmeans) <- rep("globalMean", ncol(bmeans))
}
obj.bootstrap <- bootstrapCompartments(obj,
original.obj,
bootstrap.samples = num.bootstraps,
chr = chr,
assay = "array",
parallel = parallel,
cores = cores,
targets = targets,
res = res,
genome = genome,
q = 0.95,
svd = obj.svd,
group = group,
bootstrap.means = bmeans)
#combine and return
return(obj.bootstrap)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.