# ------------------------------------------
# Set working directory and load libraries
# ------------------------------------------
if (interactive()) {cur.dir <- dirname(parent.frame(2)$ofile); setwd(cur.dir)}
R.utils::sourceDirectory("../../lib", modifiedOnly = FALSE)
suppressPackageStartupMessages(library(BPRMeth))
suppressPackageStartupMessages(library(data.table))
suppressPackageStartupMessages(library(ROCR))
rf_indep_var_analysis <- function(opts, sim){
# Initialize lists
eval_perf <- vector("list", length = length(opts$cluster_var))
i <- 1
# Iterate
for (cl_iter in opts$cluster_var) {
# Load synthetic data
io <- list(data_file = paste0("high_noise_encode_data_", cl_iter, "_", sim, ".rds"),
data_dir = "../../local-data/melissa/synthetic/imputation/dissimilarity/raw/data-sims/")
obj <- readRDS(paste0(io$data_dir, io$data_file))
# Partition to training and test sets
dt <- partition_dataset(X = obj$synth_data$X, region_train_prcg = opts$region_train_prcg,
cpg_train_prcg = opts$cpg_train_prcg, is_synth = TRUE)
# List of genes with no coverage for each cell
train_region_ind <- lapply(X = 1:opts$N, FUN = function(n) which(!is.na(dt$train[[n]])))
test_region_ind <- lapply(X = 1:opts$N, FUN = function(n) which(!is.na(dt$test[[n]])))
# List of cells with no coverage for each genomic region
cell_ind <- lapply(X = 1:opts$M, FUN = function(m) which(!is.na(lapply(dt$train, "[[", m))))
# Use RF for prediction
act_obs = pred_obs <- vector("numeric")
for (n in 1:opts$N) { # Iterate over the cells
for (m in test_region_ind[[n]]) { # Iterate over genomic regions
if (m %in% train_region_ind[[n]]) {
y <- as.factor(dt$train[[n]][[m]][,2])
if (length(levels(y)) == 1) {
if (as.numeric(levels(y)) == 1) {
dt$train[[n]][[m]] <- rbind(dt$train[[n]][[m]], c(0.1, 0))
}else{
dt$train[[n]][[m]] <- rbind(dt$train[[n]][[m]], c(0.1, 1))
}
}
model <- randomForest::randomForest(x = dt$train[[n]][[m]][,1, drop = FALSE],
y = as.factor(dt$train[[n]][[m]][,2]),
ntree = 50, nodesize = 2)
pred_obs <- c(pred_obs, predict(object = model, newdata = dt$test[[n]][[m]][,1, drop = FALSE],
type = "prob")[,2])
act_obs <- c(act_obs, dt$test[[n]][[m]][,2])
} else{
# Randomly sample a different cell that has coverage and predict from its profile
ind_cell <- sample(cell_ind[[m]], 1)
y <- as.factor(dt$train[[ind_cell]][[m]][,2])
if (length(levels(y)) == 1) {
if (as.numeric(levels(y)) == 1) {
dt$train[[ind_cell]][[m]] <- rbind(dt$train[[ind_cell]][[m]], c(0.1, 0))
}else{
dt$train[[ind_cell]][[m]] <- rbind(dt$train[[ind_cell]][[m]], c(0.1, 1))
}
}
model <- randomForest::randomForest(x = dt$train[[ind_cell]][[m]][,1, drop = FALSE],
y = as.factor(dt$train[[ind_cell]][[m]][,2]),
ntree = 50, nodesize = 2)
pred_obs <- c(pred_obs, predict(object = model, newdata = dt$test[[n]][[m]][,1, drop = FALSE],
type = "prob")[,2])
act_obs <- c(act_obs, dt$test[[n]][[m]][,2])
}
}
}
# Store evaluated performance
eval_perf[[i]] <- list(act_obs = act_obs, pred_obs = pred_obs)
##----------------------------------------------------------------------
message("Computing AUC...")
##----------------------------------------------------------------------
pred_rf <- prediction(pred_obs, act_obs)
# roc_prof <- performance(pred_prof, "tpr", "fpr")
auc_rf <- performance(pred_rf, "auc")
auc_rf <- unlist(auc_rf@y.values)
message(auc_rf)
i <- i + 1 # Increase counter
}
obj <- list(eval_perf = eval_perf, opts = opts)
return(obj)
}
##------------------------
# Load synthetic data
##------------------------
io <- list(data_file = paste0("raw/data-sims/high_noise_encode_data_0.1_1.rds"),
out_dir = "../../local-data/melissa/synthetic/imputation/dissimilarity/")
obj <- readRDS(paste0(io$out_dir, io$data_file))
opts <- obj$opts # Get options
opts$data_train_prcg <- 0.1 # % of data to keep fully for training
opts$region_train_prcg <- 1 # % of regions kept for training
opts$cpg_train_prcg <- 0.4 # % of CpGs kept for training in each region
opts$is_parallel <- TRUE # Use parallelized version
opts$no_cores <- 3 # Number of cores
rm(obj)
# Parallel analysis
no_cores_out <- BPRMeth:::.parallel_cores(no_cores = opts$total_sims,
is_parallel = TRUE)
print(date())
obj <- parallel::mclapply(X = 1:opts$total_sims, FUN = function(sim)
rf_indep_var_analysis(opts = opts, sim = sim), mc.cores = no_cores_out)
print(date())
##----------------------------------------------------------------------
message("Storing results...")
##----------------------------------------------------------------------
saveRDS(obj, file = paste0(io$out_dir, "high_noise_encode_rf_indep_K", opts$K,
"_rbf", opts$basis_prof$M,
"_dataTrain", opts$data_train_prcg,
"_regionTrain", opts$region_train_prcg,
"_cpgTrain", opts$cpg_train_prcg, ".rds") )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.