Description Usage Arguments Value Author(s) See Also Examples
eval_cluster_performance
is a wrapper function for
computing clustering performance in terms of ARI and clustering assignment
error.
1 | eval_cluster_performance(obj, C_true)
|
obj |
Output of Melissa inference object. |
C_true |
True cluster assignemnts. |
The 'melissa' object, with an additional slot named 'clustering', containing the ARI and clustering assignment error performance.
C.A.Kapourani C.A.Kapourani@ed.ac.uk
create_melissa_data_obj
, melissa
,
filter_regions
, eval_imputation_performance
,
eval_cluster_performance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## Extract synthetic data
dt <- melissa_synth_dt
# Partition to train and test set
dt <- partition_dataset(dt)
# Create basis object from BPRMeth package
basis_obj <- BPRMeth::create_rbf_object(M = 3)
# Run Melissa
melissa_obj <- melissa(X = dt$met, K = 2, basis = basis_obj, vb_max_iter = 10,
vb_init_nstart = 1, is_parallel = FALSE, is_verbose = FALSE)
# Compute cluster performance
melissa_obj <- eval_cluster_performance(melissa_obj, dt$opts$C_true)
cat("ARI: ", melissa_obj$clustering$ari)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.