Description Usage Arguments Value Author(s) See Also Examples
eval_imputation_performance
is a wrapper function for
computing imputation/clustering performance in terms of different metrics,
such as AUC and precision recall curves.
1 | eval_imputation_performance(obj, imputation_obj)
|
obj |
Output of Melissa inference object. |
imputation_obj |
List containing two vectors of equal length, corresponding to true methylation states and predicted/imputed methylation states. |
The 'melissa' object, with an additional slot named 'imputation', containing the AUC, F-measure, True Positive Rate (TPR) and False Positive Rate (FPR), and Precision Recall (PR) curves.
C.A.Kapourani C.A.Kapourani@ed.ac.uk
create_melissa_data_obj
, melissa
,
impute_test_met
, filter_regions
,
eval_imputation_performance
,
eval_cluster_performance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # First take a subset of cells to efficiency
# Extract synthetic data
dt <- melissa_synth_dt
# Partition to train and test set
dt <- partition_dataset(dt)
# Create basis object from BPRMeth package
basis_obj <- BPRMeth::create_rbf_object(M = 3)
# Run Melissa
melissa_obj <- melissa(X = dt$met, K = 2, basis = basis_obj, vb_max_iter = 10,
vb_init_nstart = 1, is_parallel = FALSE, is_verbose = FALSE)
imputation_obj <- impute_test_met(obj = melissa_obj, test = dt$met_test)
melissa_obj <- eval_imputation_performance(obj = melissa_obj,
imputation_obj = imputation_obj)
cat("AUC: ", melissa_obj$imputation$auc)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.