computePca: Perform a PCA on a matrix where columns are variables

Description Usage Arguments Value Examples

View source: R/AffiXcan.R

Description

Perform a PCA on a matrix where columns are variables

Usage

1
computePca(data, varExplained = 80, scale = TRUE)

Arguments

data

A matrix containing the TBA values for a certain genomic region; columns are PWMs, rows are individuals IIDs

varExplained

An integer between 0 and 100; varExplained=80 means that the principal components selected to fit the models must explain at least 80 percent of variation of TBA values; default is 80

scale

A logical; if scale=FALSE the TBA values will be only centered, not scaled before performing PCA; default is TRUE

Value

A list containing two objects:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
if (interactive()) {
data(exprMatrix)
sampleNames <- colnames(exprMatrix)
nSamples <- length(sampleNames)
sampGroups <- subsetKFold(k=3, n=nSamples)
for (i in seq(length(sampGroups))) {
     sampGroups[[i]] <- colnames(exprMatrix)[sampGroups[[i]]]
}
testingSamples <- sampGroups[[i]]
trainingSamples <- sampleNames[!sampleNames %in% testingSamples]

tbaMatrixMAE <- readRDS(system.file("extdata","training.tba.toydata.rds",
package="AffiXcan"))
tbaMatrixMAE <- MultiAssayExperiment::subsetByRow(tbaMatrixMAE,
                                                  trainingSamples)
tbaMatrix <- MultiAssayExperiment::experiments(tbaMatrixMAE)
tba <- tbaMatrix$ENSG00000256377.1

pca <- computePca(data=tba, varExplained=80, scale=TRUE)

}

alussana/AffiXcan documentation built on Oct. 20, 2020, 12:08 a.m.