## PART THAT DEALS WITH DIFFERENTIAL METHYLATION CALCULATIONS
##############################################################################
## S3 functions to be used in S4 stuff
##############################################################################
# wrapper function for SLIM, p.adjust, qvalue-package
p.adjusted <- function(pvals,method=c("SLIM","holm","hochberg","hommel",
"bonferroni","BH","BY","fdr","none",
"qvalue"),
n=length(pvals),fdr.level=NULL,pfdr=FALSE,STA=.1,Divi=10,
Pz=0.05,B=100,Bplot=FALSE){
method <- match.arg(method)
## perform adjustment
qvals=switch(method,
# SLIM function
SLIM={QValuesfun(pvals,
SLIMfunc(pvals,STA=STA,Divi=Divi,Pz=Pz,B=B,
Bplot=Bplot)$pi0_Est)
},
# r-base/p-adjust functions
holm={p.adjust(pvals,method=method,n)},
hochberg={p.adjust(pvals,method=method,n)},
hommel={p.adjust(pvals,method=method,n)},
bonferroni={p.adjust(pvals,method=method,n)},
BH={p.adjust(pvals,method=method,n)},
BY={p.adjust(pvals,method=method,n)},
fdr={p.adjust(pvals,method=method,n)},
none={p.adjust(pvals,method=method,n)},
# r-bioconductor/qvalue-package function
qvalue={qvalue(pvals,fdr.level,pfdr)$qvalues}
)
return(qvals)
}
# SLIM
######################################
#####SLIM pi0 Estimation function
#####Copyright by Tsai Lab of UGA, US, and Hong-Qiang Wang, IIM, CAS, China
#####Reference: SLIM: A Sliding Linear Model for Estimating the Proportion of
##### True Null Hypotheses in Datasets With Dependence Structures
#####usage:
#####inputs:
#####rawp:p-values, required
#####STA:lambda1
#####Divi: the number of segments
#####Pz: maximum of p-values of alternative tests
#####B: the number of quantile points
#####Bplot: logic, if true, drawing lambda-gamma plot
#####outputs:
#####pi0_Est: estimated value of pi0
#####selQuantile: the value of alpha determined
#####################################
SLIMfunc<-function(rawp,STA=.1,Divi=10,Pz=0.05,B=100,Bplot=FALSE)
{
####################
m <- length(rawp)
########################
alpha_mtx=NULL;#
pi0s_est_COM=NULL;
SzCluster_mtx=NULL;
P_pi1_mtx=NULL;
pi1_act_mtx=NULL;
Dist_group=NULL;
Num_mtx=NULL;
Gamma=NULL;
PI0=NULL;
#############
##observed points
lambda_ga=seq(0,1,0.001);
gamma_ga=sapply(lambda_ga,f1,rawp=rawp);
Gamma=c(Gamma,gamma_ga);
alpha_mtx=c(alpha_mtx,gamma_ga[which(lambda_ga==0.05)]);
###esimation
pi0_mtx=NULL;
x.axis=NULL;
y.axis=NULL;
itv=(1-STA)/Divi;
for (i in 1:Divi)##10 for uniform data
{
cutoff=STA+(i/Divi)*(1-STA);##10 for uniform data
lambda=seq(cutoff-itv,cutoff,itv/10);
gamma_mtx=sapply(lambda,f1,rawp=rawp);
LModel=lm(gamma_mtx~lambda);
pi0_mtx=c(pi0_mtx,coefficients(LModel)[2]);
}
##################################
########searching
N_COM=NULL;
N_rawp=NULL;
maxFDR_mtx=NULL;
quapoint_mtx=NULL;
if (B<=1) B=100;
quapoint_mtx=seq(0.01,0.99,1/B);
for (k in 1:length(quapoint_mtx))
{
qua_point=quapoint_mtx[k];
pi0_combLR=min(quantile(pi0_mtx,qua_point),1);#mean(pi0_mtx);#median();
# qua_point=0.78 for desreasing distribution;
##0.4 for uniform or normal distribution;
pi0_est=pi0_combLR;
###########Calculate independent index of raw p vlaues
PI0=rbind(PI0,pi0_mtx);
pi0s_est_COM=c(pi0s_est_COM,pi0_est);
##Condition1
P_pi1=sort(rawp)[max(length(rawp)*(1-pi0_est),1)];##
P_pi1_mtx=c(P_pi1_mtx,P_pi1);
pi0=pi0_est;
if (is.null(Pz)) Pz=0.05;
maxFDR=Pz*pi0/(1-(1-Pz)*pi0);
maxFDR_mtx=c(maxFDR_mtx,maxFDR);
qvalues_combLR=QValuesfun(rawp,pi0);
qvalue_cf=maxFDR;
selected=which(qvalues_combLR<qvalue_cf);
Sel_qvalues_combLR=selected;
pi1_act_mtx=c(pi1_act_mtx,length(Sel_qvalues_combLR)/length(rawp));
N_COM=c(N_COM,list(Sel_qvalues_combLR));
Num_mtx=c(Num_mtx,length(Sel_qvalues_combLR));
}
length(N_COM)
length(quapoint_mtx)
####doing judging
##by max FDR
pi1s_est_COM=1-pi0s_est_COM;
Diff=sum(rawp<=Pz)/length(rawp)-pi1_act_mtx;
###
loc=which.min(abs(Diff));
Diff.loc=Diff[loc];
selQuantile=quapoint_mtx[loc];
pi0_Est=min(1,pi0s_est_COM[loc]);
maxFDR.Pz=Pz*pi0_Est/(1-(1-Pz)*pi0_Est);
if(Bplot)
{
#windows();
par(mfrow=c(1,2));
hist(rawp,main="Histogram of p-value");
gamma_ga=sapply(lambda_ga,f1,rawp=rawp);
plot(lambda_ga,gamma_ga,type="l",
main="Relationship of p- and q value",
xlab=expression(lambda),ylab=expression(gamma),
cex.lab=1.45,cex.axis=1.42)
#par(xaxp=c(0,1,10));
#axis(1);
##qvalues
qValues=QValuesfun(rawp,pi0=pi0_Est);
gammaq_ga=sapply(lambda_ga,f1,rawp=qValues);
lines(lambda_ga,gammaq_ga,col="blue",lwd=2,lty="dashed")
abline(v=Pz,col="black",lwd=2,lty="dotdash")
abline(v=maxFDR.Pz,col="blue",lwd=2,lty="dotdash")
text(0.75,0.6,labels=paste("L=",round(abs(Diff.loc),4),sep=""));
leg=list(bquote("CPD of p-value"),bquote("CPD of q-value"),
bquote("Pmax"==.(Pz)),bquote("FDRmax"==.(round(maxFDR.Pz,2))));
legend("bottomright",legend=as.expression(leg),lwd=2,
lty=c("solid","dashed","dotdash","dotdash"),
col=c("black","blue","black","blue"));
}
return(list(pi0_Est=pi0_Est,selQuantile=selQuantile));
}
####
f1<-function(cutoff,rawp){sum(rawp<cutoff)/length(rawp)};
###
QValuesfun<-function(rawp,pi0)
{
order_rawp=sort(rawp);
#order_rawp=sort(rawp,method="qu");
qvalues=pi0*length(order_rawp)*order_rawp/c(1:length(order_rawp));
temp=cummin(qvalues[seq(length(qvalues),1,-1)])
qvalues=temp[seq(length(temp),1,-1)];
qvalues=qvalues[order(order(rawp))]
}
# New calulateDiffMeth-part
logReg<-function(counts, vars, treatment,
overdispersion=c("none","MN","shrinkMN"),
effect=c("wmean","mean","predicted"), parShrinkMN=list(),
test=c("F","Chisq")){
# correct counts and treatment factor for NAs in counts
treatment<-ifelse(is.na(counts),NA,treatment)[1:length(treatment)]
vars = vars[!is.na(treatment),] # update covariates if there are NAs
treatment<-treatment[!is.na(treatment)]
counts<-counts[!is.na(counts)] # update counts if there are NAs
w=counts[1:(length(counts)/2)]+counts[((length(counts)/2)+1):length(counts)]
y=counts[1:(length(counts)/2)]
prop=y/w
# get the model matrix from treatment and (optional) covariates
vars <- as.data.frame(cbind(treatment,vars))
# get formula from model matrix
formula <-as.formula(paste("~ ", paste(colnames(vars), collapse= "+")))
# if there are covariates other than treatment
if(ncol(vars)>1){
fmlaCov<-as.formula(paste("~ ", paste(colnames(vars)[-1], collapse= "+")))
modelCov<-model.matrix(as.formula(fmlaCov),as.data.frame(vars[,-1,drop=FALSE]) )
# this is only with covariates
objCov=glm.fit(modelCov,prop,weights=w,family=binomial(link=logit))
}
# full model with all variables
modelMat<-model.matrix( formula ,as.data.frame(vars) )
obj=glm.fit(modelMat,prop,weights=w,family=binomial(link=logit))
mu=fitted(obj)
nprm=length(obj$coef) # number of parameters fitted
#get dispersion
overdispersion <- match.arg(overdispersion)
phi=switch(overdispersion,
none=1,
MN={
mu=fitted(obj)
uresids <- (y-w*mu)/sqrt(mu*(w-w*mu)) # pearson residuals
phi=sum( uresids^2 )/(length(w)-nprm) # correction factor
ifelse(phi>1,phi,1)
},
shrinkMN={
mu=fitted(obj)
uresids <- (y-w*mu)/sqrt(mu*(w-w*mu)) # pearson residuals
phi=sum( uresids^2 )/(length(w)-nprm) # correction factor
# change phi with parameters from parShrinkMN
df.prior=parShrinkMN$df.prior
var.prior=parShrinkMN$var.prior
df.total=(length(w)-nprm)+df.prior
phi=((length(w)-nprm)*phi + df.prior*var.prior)/df.total
ifelse(phi>1,phi,1)
})
if(ncol(vars)>1){
deviance <- objCov$deviance - obj$deviance
if(deviance==0) warning("Full model does not deviate from Reduced model.")
ddf=objCov$df.residual-obj$df.residual
}else{
deviance <- obj$null.deviance - obj$deviance
ddf=obj$df.null-obj$df.residual # difference in degrees of freedom
}
test=match.arg(test)
# do F-test when overdispersion >1 given
test=ifelse(test=="F" & phi>1,"F","Chisq")
p.value=switch(test,
F={
pf(deviance/phi, ddf, (length(w)-nprm), lower.tail = FALSE)
},
Chisq={
pchisq(deviance/phi, 1, lower.tail = FALSE)
})
if(is.na(p.value)) {
warning("Replacing NaN with 1.")
p.value <- 1
}
#calculate effect size
effect <- match.arg(effect)
meths=switch(effect,
wmean={
#ms=tapply(y, as.factor(vars$treatment), sum )
ms=tapply(y,treatment,sum)
#ws=tapply(w, as.factor(vars$treatment), sum )
ws=tapply(w,treatment,sum)
ms/ws
},
mean={
tapply(prop, treatment, FUN = mean)
},
predicted={
tapply(mu, treatment, FUN = mean)
}
)
# calculate the difference
# if more than two groups calculate is as abs(max difference between two groups)
if(length(unique(treatment))>2){
meth.diff=max(meths)-min(meths)
}else{
meth.diff=meths[2]-meths[1]
}
names(meths)=paste0("meth_",names(meths))
c(meth.diff=100*meth.diff,p.value=p.value,q.value=p.value,100*meths)
}
# estimation of shrinkage parameters
estimateShrinkageMN<-function(cntlist,treatment,covariates,
sample.size=100000,mc.cores=1){
message("Estimating shrinkage for scaling factor phi...")
# get formula and construct model matrix
vars <- as.data.frame(cbind(treatment,covariates))
formula <-as.formula(paste("~ ", paste(colnames(vars), collapse= "+")))
modelMat<-model.matrix( formula ,as.data.frame(vars) )
# check number of samples
sample.size <- ifelse(length(cntlist)<=100000,length(cntlist),sample.size)
# calculate phis up to the first 100000 sites (stabilizing point)
estimation=simplify2array(
mclapply(cntlist[1:sample.size],estimatePhi,modelMat=modelMat,treatment=treatment,
mc.cores=mc.cores))
# for each phi, take the correct df (depending on number of model parameters)
phis<-estimation[1,]
df<-estimation[2,]
# squeeze sample variances
shr=squeezeVar(phis,df)
# output prior df and variances (to be used later as input for parShrinkMN)
list(df.prior=shr$df.prior,var.prior=shr$var.prior)
}
estimatePhi<-function(counts,modelMat,treatment){
# correct modelMat, counts and treatment factor for NAs in counts
treatment<-treatment[!is.na(counts)[1:length(treatment)]]
modelMat <- modelMat[!is.na(counts)[1:nrow(modelMat)],]
counts<-counts[!is.na(counts)]
n=counts[1:(length(counts)/2)]+counts[((length(counts)/2)+1):length(counts)]
y=counts[1:(length(counts)/2)]
prop=y/n
glmfit=glm.fit(modelMat,prop,weights=n,family=binomial(link=logit))
# fit glm
mu <- fitted(glmfit)
nprm=length(glmfit$coef) # number of parameters fitted
# calculate and record results
resids <- (y-n*mu)/sqrt(mu*(n-n*mu))
# get phi correction coefficients
phi <- sum( resids^2 )/(length(n)-nprm)
c(phi,(length(n)-nprm))
}
# A FASTER VERSION OF FISHERs EXACT
fast.fisher<-function (x, y = NULL, workspace = 2e+05, hybrid = FALSE, control = list(),
or = 1, alternative = "two.sided", conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000, cache=F)
{
if (nrow(x)!=2 | ncol(x)!=2) stop("Incorrect input format for fast.fisher")
#if (cache) {
# key = paste(x,collapse="_")
# cachedResult = hashTable[[key]]
# if (!is.null(cachedResult)) {
# return(cachedResult)
# }
#}
# ---- START: cut version of fisher.test ----
DNAME <- deparse(substitute(x))
METHOD <- "Fisher's Exact Test for Count Data"
nr <- nrow(x)
nc <- ncol(x)
PVAL <- NULL
if ((nr == 2) && (nc == 2)) {
m <- sum(x[, 1])
n <- sum(x[, 2])
k <- sum(x[1, ])
x <- x[1, 1]
lo <- max(0, k - n)
hi <- min(k, m)
NVAL <- or
names(NVAL) <- "odds ratio"
support <- lo:hi
logdc <- dhyper(support, m, n, k, log = TRUE)
dnhyper <- function(ncp) {
d <- logdc + log(ncp) * support
d <- exp(d - max(d))
d/sum(d)
}
mnhyper <- function(ncp) {
if (ncp == 0)
return(lo)
if (ncp == Inf)
return(hi)
sum(support * dnhyper(ncp))
}
pnhyper <- function(q, ncp = 1, upper.tail = FALSE) {
if (ncp == 1) {
if (upper.tail)
return(phyper(x - 1, m, n, k, lower.tail = FALSE))
else return(phyper(x, m, n, k))
}
if (ncp == 0) {
if (upper.tail)
return(as.numeric(q <= lo))
else return(as.numeric(q >= lo))
}
if (ncp == Inf) {
if (upper.tail)
return(as.numeric(q <= hi))
else return(as.numeric(q >= hi))
}
d <- dnhyper(ncp)
if (upper.tail)
sum(d[support >= q])
else sum(d[support <= q])
}
if (is.null(PVAL)) {
PVAL <- switch(alternative, less = pnhyper(x, or),
greater = pnhyper(x, or, upper.tail = TRUE),
two.sided = {
if (or == 0)
as.numeric(x == lo)
else if (or == Inf)
as.numeric(x == hi)
else {
relErr <- 1 + 10^(-7)
d <- dnhyper(or)
sum(d[d <= d[x - lo + 1] * relErr])
}
})
if (PVAL > 1)
PVAL = floor(PVAL)
RVAL <- list(p.value = PVAL)
}
mle <- function(x) {
if (x == lo)
return(0)
if (x == hi)
return(Inf)
mu <- mnhyper(1)
if (mu > x)
uniroot(function(t) mnhyper(t) - x, c(0, 1))$root
else if (mu < x)
1/uniroot(function(t) mnhyper(1/t) - x, c(.Machine$double.eps,
1))$root
else 1
}
ESTIMATE <- mle(x)
#names(ESTIMATE) <- "odds ratio"
RVAL <- c(RVAL, estimate = ESTIMATE, null.value = NVAL)
}
RVAL <- c(RVAL, alternative = alternative, method = METHOD, data.name = DNAME)
attr(RVAL, "class") <- "htest"
# ---- END: cut version of fisher.test ----
#if (cache) hashTable[[key]] <<- RVAL # write to global variable
return(RVAL)
}
## suggested by @zellerivo https://github.com/al2na/methylKit/issues/96
midPval <- function (cntg_table) # very fast fisher
{
q <- cntg_table[1, 1]
m <- cntg_table[1, 1] + cntg_table[2, 1]
n <- cntg_table[1, 2] + cntg_table[2, 2]
k <- cntg_table[1, 1] + cntg_table[1, 2]
pval_right <- phyper(q = q, m = m, n = n, k = k, lower.tail = FALSE) +
(0.5 * dhyper(q, m, n, k))
pval_left <- phyper(q = q - 1, m = m, n = n, k = k, lower.tail = TRUE) +
(0.5 * dhyper(q, m, n, k))
return(ifelse(test = pval_right > pval_left, yes = pval_left *
2, no = pval_right * 2))
}
## checks before running .calculateDiffMeth
.checksCalculateDiffMeth <- function(treatment,covariates,Tcols){
if(length(treatment) < 2 )
stop("can not do differential methylation calculation with less ",
"than two samples")
if(length(unique(treatment)) < 2 )
stop("can not do differential methylation calculation when there ",
"is no control\n",
"treatment option should have 0 and 1 designating treatment ",
"and control samples")
if(length(unique(treatment)) == 2 )
message("two groups detected:\n ",
"will calculate methylation difference as the difference of\n",
sprintf("treatment (group: %s) - control (group: %s)",
levels(as.factor(treatment))[2],
levels(as.factor(treatment))[1]))
if(length(unique(treatment)) > 2 )
message("more than two groups detected:\n ",
"will calculate methylation difference as the difference ",
"of max(x) - min(x),\n ",
"where x is vector of mean methylation per group per region,",
"but \n the statistical test will remain the same.")
#### check if covariates+intercept+treatment more than replicates
if(!is.null(covariates)){if(ncol(covariates)+2 >= length(Tcols)){
stop("Too many covariates/too few replicates.")}}
}
.calculateDiffMeth <- function(subst,
treatment,
covariates=NULL,
overdispersion=c("none",
"MN","shrinkMN"),
adjust=c("SLIM","holm","hochberg",
"hommel", "bonferroni","BH",
"BY","fdr", "none","qvalue"),
effect=c("wmean","mean","predicted"),
parShrinkMN=list(),
test=c("F","Chisq",
"fast.fisher","midPval"),
mc.cores=1,
slim=TRUE,
weighted.mean=TRUE) {
# add backwards compatibility with old parameters
if(slim==FALSE) adjust="BH" else adjust=adjust
if(weighted.mean==FALSE) effect="mean" else effect=effect
vars <- covariates
# get C and T cols from methylBase data.frame-part
Tcols = seq(from = 7,to = ncol(subst), by=3)
Ccols = Tcols-1
cnt_matrix <- as.matrix(subst[, c(Ccols, Tcols)])
# unique rows in matrix; output indices in cnt_matrix as well
un_cnt <- mgcv::uniquecombs(cnt_matrix)
index <- attr(un_cnt, "index")
# message(sprintf(" lookup table reduced number of calculations by %.2f %%",
# (1-nrow(un_cnt)/nrow(cnt_matrix))*100 ) )
if( length(index) == 1 )
un_cnt <- matrix(un_cnt,ncol = 4,byrow = TRUE)
# split count matrix
cntlist = split(un_cnt,
f = 1:nrow(un_cnt))
test=match.arg(test)
if(length(treatment)==2 ){
# do fast.fisher by default
if(test %in% c("F", "Chisq")) {
default_pair_test = "fast.fisher"
message(sprintf(c("\n NOTE: performing '%s' instead of '%s' ",
"for two groups testing."),
default_pair_test, test))
test = default_pair_test
}
fpval <- switch(test,
fast.fisher={
unlist( mclapply( cntlist,
function(x) fast.fisher(
matrix(as.numeric( x),
ncol=2,byrow=F),
conf.int = F)$p.value,
mc.cores=mc.cores,
mc.preschedule = TRUE) )
},
midPval = {
unlist( mclapply( cntlist,
function(x) midPval(
matrix(as.numeric( x),
ncol=2,byrow=F)),
mc.cores=mc.cores,
mc.preschedule = TRUE) )
}
)
# map pvals back to whole set of cytosine positions
fpval <- fpval[index]
# set1 is the high, set2 is the low level of the group
set1.Cs=Ccols[treatment==levels(as.factor(treatment))[2]]
set2.Cs=Ccols[treatment==levels(as.factor(treatment))[1]]
# calculate mean methylation change
mom.meth1 = 100*(subst[,set1.Cs]/subst[,set1.Cs-1]) # get % methylation
mom.meth2 = 100*(subst[,set2.Cs]/subst[,set2.Cs-1])
# get difference between percent methylations
mom.mean.diff=mom.meth1-mom.meth2
x=data.frame(subst[,1:4],fpval,
p.adjusted(fpval,method=adjust),
meth.diff=mom.mean.diff,stringsAsFactors=FALSE)
colnames(x)[5:7] <- c("pvalue","qvalue","meth.diff")
}else{
# do fast.fisher by default
if(test %in% c("fast.fisher","midPval")) {
default_multi_test = "Chisq"
message(sprintf(c("\n NOTE: performing '%s' instead of '%s' ",
"for more than two groups testing."),
default_multi_test, test))
test = default_multi_test
}
# get count matrix and make list
cntlist=split(as.matrix(subst[,c(Ccols,Tcols)]),1:nrow(subst))
# call estimate shrinkage before logReg
if(overdispersion[1] == "shrinkMN"){
parShrinkMN<-estimateShrinkageMN(cntlist,
treatment=treatment,
covariates=vars,
sample.size=100000,
mc.cores=mc.cores)
}
# get the result of tests
tmp=simplify2array(
mclapply(cntlist,logReg,vars,treatment=treatment,
overdispersion=overdispersion,effect=effect,
parShrinkMN=parShrinkMN,test=test,mc.cores=mc.cores))
# return the data frame part of methylDiff
tmp <- as.data.frame(t(tmp))
x=data.frame(subst[,1:4],tmp$p.value,
p.adjusted(tmp$q.value,method=adjust),
meth.diff=tmp[,1],
stringsAsFactors=FALSE)
colnames(x)[5:7] <- c("pvalue","qvalue","meth.diff")
}
return(x)
}
# end of S3 functions
##############################################################################
## S4 OBJECTS
##############################################################################
# methylDiff --------------------------------------------------------------
#' An S4 class that holds differential methylation information
#'
#' This class is designed to hold statistics and locations for differentially
#' methylated regions/bases. It extends \code{\link{data.frame}} class.
#' \code{\link{calculateDiffMeth}} function returns an object
#' with \code{methylDiff} class.
#'
#' @section Slots:\describe{
#' \item{\code{sample.ids}}{ids/names of samples in a vector}
#' \item{\code{assembly}}{a name of genome assembly, such as :hg18,mm9, etc}
#' \item{\code{context}}{numeric vector identifying which samples are which
#' group }
#' \item{\code{treatment}}{numeric vector identifying which samples are which
#' group }
#' \item{\code{destranded}}{logical denoting if methylation inormation is
#' destranded or not}
#' \item{\code{resolution}}{string either 'base' or 'region' defining the
#' resolution of methylation information}
#' \item{\code{.Data}}{data.frame holding the locations and statistics}
#'
#' }
#'
#' @section Details:
#' \code{methylDiff} class extends \code{\link{data.frame}} class therefore
#' providing novice and experienced R users with a data structure that is
#' well known and ubiquitous in many R packages.
#'
#' @section Subsetting:
#' In the following code snippets, \code{x} is a \code{methylDiff} object.
#' Subsetting by \code{x[i,]} will produce a new object if subsetting is done
#' on rows. Column subsetting is not directly allowed to prevent errors in the
#' downstream analysis. see ?methylKit[ .
#'
#' @section Coercion:
#' \code{methylDiff} object can be coerced to
#' \code{\link[GenomicRanges:GRanges-class]{GRanges}} object via \code{\link{as}} function.
#'
#' @section Accessors:
#' The following functions provides access to data slots of methylDiffDB:
#' - \code{\link{getData}}: get the data slot from the methylKit objects,
#' - \code{\link{getAssembly}}: get assembly of the genome,
#' - \code{\link{getContext}}: get the context of methylation
#'
#' @examples
#' data(methylKit)
#' library(GenomicRanges)
#' my.gr=as(methylDiff.obj,"GRanges")
#'
#' @name methylDiff-class
#' @aliases methylDiff
#' @rdname methylDiff-class
#' @export
#' @docType class
setClass("methylDiff",representation(
sample.ids = "character", assembly = "character",context = "character",
treatment="numeric",destranded="logical",resolution="character"),
contains="data.frame")
##############################################################################
#### S4 FUNCTIONS ####
##############################################################################
# calculateDiffMeth ----------------------------------------------------------
#' Calculate differential methylation statistics
#'
#' The function calculates differential methylation statistics between two groups
#' of samples. The function uses either logistic regression test
#' or Fisher's Exact test to calculate differential methylation.
#' See the rest of the help page and
#' references for detailed explanation on statistics.
#'
#' @param .Object a \code{\link{methylBase}} or \code{\link{methylBaseDB}} object to calculate differential
#' methylation
#' @param covariates a \code{\link{data.frame}} containing covariates, which should be
#' included in the test.
#' @param overdispersion If set to "none"(default), no overdispersion correction
#' will be attempted.
#' If set to "MN", basic overdispersion correction,
#' proposed by McCullagh and Nelder (1989) will be applied.This
#' correction applies a scaling parameter to variance estimated
#' by the model.
#' EXPERIMENTAL: If set to "shrinkMN", scaling parameter will be
#' shrunk towards a common value (not thoroughly tested as of yet).
#' @param adjust different methods to correct the p-values for multiple testing.
#' Default is "SLIM" from methylKit. For "qvalue" please see
#' \code{\link[qvalue]{qvalue}}
#' and for all other methods see \code{\link[stats]{p.adjust}}.
#' @param effect method to calculate the mean methylation different between groups
#' using read coverage as weights (default). When set to "mean",
#' the generic mean is applied
#' and when set to "predicted", predicted means from the logistic
#' regression model is used for calculating the effect.
#' @param parShrinkMN a list for squeezeVar(). (NOT IMPLEMENTED)
#' @param test the statistical test used to determine the methylation differences.
#' The Chisq-test is used by default for more than two groups,
#' while the F-test can be chosen if overdispersion control
#' is applied. If there is one sample per group
#' the Fisher's exact test will be applied using "fast.fisher", while
#' "midPval" can be choosen to boost calculation speed.
#' See details section for more information.
#' @param mc.cores integer denoting how many cores should be used for parallel
#' differential methylation calculations (can only be used in
#' machines with multiple cores).
#' @param slim If set to FALSE, \code{adjust} will be set to "BH" (default
#' behaviour of earlier versions)
#' @param weighted.mean If set to FALSE, \code{effect} will be set to "mean"
#' (default behaviour of earlier versions)
#' @param chunk.size Number of rows to be taken as a chunk for processing the
#' \code{methylBaseDB} objects (default: 1e6)
#' @param save.db A Logical to decide whether the resulting object should be
#' saved as flat file database or not, default: explained in
#' Details section.
#' @param ... optional Arguments used when save.db is TRUE
#'
#' \code{suffix}
#' A character string to append to the name of the output
#' flat file database,
#' only used if save.db is true, default actions:
#' The default suffix is a 13-character random string appended
#' to the fixed prefix \dQuote{methylDiff}, e.g.
#' \dQuote{methylDiff_16d3047c1a254.txt.bgz}.
#'
#'
#' \code{dbdir}
#' The directory where flat file database(s) should be stored,
#' defaults
#' to getwd(), working directory for newly stored databases
#' and to same directory for already existing database
#'
#' \code{dbtype}
#' The type of the flat file database, currently only option
#' is "tabix"
#' (only used for newly stored databases)
#'
#'
#' @examples
#'
#' data(methylKit)
#'
#' # The Chisq-test will be applied when no overdispersion control is chosen.
#' my.diffMeth=calculateDiffMeth(methylBase.obj,covariates=NULL,
#' overdispersion=c("none"),
#' adjust=c("SLIM"))
#'
#' # pool samples in each group
#' pooled.methylBase=pool(methylBase.obj,sample.ids=c("test","control"))
#'
#' # After applying the pool() function, there is one sample in each group.
#' # The Fisher's exact test will be applied for differential methylation.
#' my.diffMeth2=calculateDiffMeth(pooled.methylBase,covariates=NULL,
#' overdispersion=c("none"),
#' adjust=c("SLIM"))
#'
#' # Covariates and overdispersion control:
#' # generate a methylBase object with age as a covariate
#' covariates=data.frame(age=c(30,80,30,80))
#' sim.methylBase<-dataSim(replicates=4,sites=1000,treatment=c(1,1,0,0),
#' covariates=covariates,
#' sample.ids=c("test1","test2","ctrl1","ctrl2"))
#'
#' # Apply overdispersion correction and include covariates
#' # in differential methylation calculations.
#' my.diffMeth3<-calculateDiffMeth(sim.methylBase,
#' covariates=covariates,
#' overdispersion="MN",test="Chisq",mc.cores=1)
#'
#' @return a \code{\link{methylDiff}} object containing the differential methylation
#' statistics and locations for regions or bases
#' @section Details:
#' Covariates can be included in the analysis. The function will then try to
#' separate the
#' influence of the covariates from the treatment effect via a linear model.\cr
#' The Chisq-test is used per default only when no overdispersion correction is
#' applied.
#' If overdispersion correction is applied, the function automatically switches
#' to the
#' F-test. The Chisq-test can be manually chosen in this case as well, but the
#' F-test only
#' works with overdispersion correction switched on. \cr
#' If there is one sample in each group, e.g. after applying the pooling samples,
#' the Fisher's exact test will be applied for differential methylation.
#' methyKit offers two implementations to perform this test, which yield
#' slightly different results but differ much in computation time.
#' "fast.fisher" is a cut down version `fisher.test()` that should produce
#' the exact same results as the base implementation, while "midPval"
#' will produce marginaly different p-values, but offers a large boost in
#' calculation speed.
#'
#' The parameter \code{chunk.size} is only used when working with
#' \code{methylBaseDB} objects, as they are read in chunk by chunk to enable
#' processing large-sized objects which are stored as flat file database.
#' Per default the chunk.size is set to 1M rows, which should work for most systems.
#' If you encounter memory problems or
#' have a high amount of memory available feel free to adjust the \code{chunk.size}.
#'
#' The parameter \code{save.db} is per default TRUE for
#' methylDB objects as \code{methylBaseDB},
#' while being per default FALSE for \code{methylBase}.
#' If you wish to save the result of an
#' in-memory-calculation as flat file database or if the size of the database
#' allows the calculation in-memory,
#' then you might want to change the value of this parameter.
#'
#' @references Altuna Akalin, Matthias Kormaksson, Sheng Li,
#' Francine E. Garrett-Bakelman, Maria E. Figueroa, Ari Melnick,
#' Christopher E. Mason. (2012).
#' "methylKit: A comprehensive R package for the analysis
#' of genome-wide DNA methylation profiles." Genome Biology.
#'
#' McCullagh and Nelder. (1989). Generalized Linear Models. Chapman
#' and Hall. London New York.
#'
#' Barnard. (1989). On alleged gains in power from lower P-values.
#' Statistics in Medicine.
#' Armitage and Berry. (1994) Statistical Methods in Medical Research (3rd
#' edition). Blackwell.
#' @seealso \code{\link{pool}}, \code{\link{reorganize}}
#' \code{\link{dataSim}}
#'
#' @export
#' @docType methods
#' @aliases calculateDiffMeth,methylBase-method
#' @rdname calculateDiffMeth-methods
setGeneric("calculateDiffMeth", function(.Object,covariates=NULL,
overdispersion=c("none",
"MN","shrinkMN"),
adjust=c("SLIM","holm","hochberg",
"hommel", "bonferroni","BH",
"BY","fdr", "none","qvalue"),
effect=c("wmean","mean","predicted"),
parShrinkMN=list(),
test=c("F","Chisq",
"fast.fisher","midPval"),
mc.cores=1,
slim=TRUE,
weighted.mean=TRUE,
chunk.size=1e6,
save.db=FALSE,
...) {
standardGeneric("calculateDiffMeth")
}
)
setMethod("calculateDiffMeth", "methylBase",
function(.Object,covariates,overdispersion,
adjust,effect,parShrinkMN,
test,mc.cores,slim,weighted.mean,save.db=FALSE, ...){
# check object before starting calculations
.checksCalculateDiffMeth(treatment = .Object@treatment,
covariates = covariates,
Tcols = .Object@numTs.index)
# extract data.frame from methylBase
subst=S3Part(.Object,strictS3 = TRUE)
# run calculation
x = .calculateDiffMeth(subst = subst,
treatment = .Object@treatment,
covariates = covariates,
overdispersion = overdispersion,
adjust = adjust,
effect = effect,
parShrinkMN = parShrinkMN,
test = test,
slim = slim,
weighted.mean = weighted.mean,
mc.cores = mc.cores)
if(!save.db) {
obj=new("methylDiff",x,sample.ids=.Object@sample.ids,
assembly=.Object@assembly,context=.Object@context,
destranded=.Object@destranded,treatment=.Object@treatment,
resolution=.Object@resolution)
return(obj)
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
# if(!( "dbtype" %in% names(args) ) ){
# dbtype <- "tabix"
# } else { dbtype <- args$dbtype }
if(!( "suffix" %in% names(args) ) ){
suffix <- NULL
} else {
suffix <- paste0("_",args$suffix)
}
# create methylDiffDB
obj <- makeMethylDiffDB(df=x,dbpath=dbdir,dbtype="tabix",
sample.ids=.Object@sample.ids,
assembly=.Object@assembly,context=.Object@context,
destranded=.Object@destranded,
treatment=.Object@treatment,
resolution=.Object@resolution,suffix=suffix )
message(paste0("flatfile located at: ",obj@dbpath))
return(obj)
}
}
)
##############################################################################
## ACESSOR FUNCTIONS FOR methylDiff OBJECT
##############################################################################
#' @rdname show-methods
#' @aliases show,methylDiff
setMethod("show", "methylDiff", function(object) {
cat("methylDiff object with",nrow(object),"rows\n--------------\n")
print(head(object))
cat("--------------\n")
cat("sample.ids:",object@sample.ids,"\n")
cat("destranded",object@destranded,"\n")
cat("assembly:",object@assembly,"\n")
cat("context:", object@context,"\n")
cat("treament:", object@treatment,"\n")
cat("resolution:", object@resolution,"\n")
})
#' @rdname getContext-methods
#' @aliases getContext,methylDiff-method
setMethod("getContext", signature="methylDiff", definition=function(x) {
return(x@context)
})
#' @rdname getAssembly-methods
#' @aliases getAssembly,methylDiff-method
setMethod("getAssembly", signature="methylDiff", definition=function(x) {
return(x@assembly)
})
# a function for getting data part of methylDiff
#' @rdname getData-methods
#' @aliases getData,methylDiff-method
setMethod(f="getData", signature="methylDiff", definition=function(x) {
#return(as(x,"data.frame"))
return(S3Part(x, strictS3 = TRUE))
})
#' @rdname getTreatment-methods
#' @aliases getTreatment,methylDiff-method
setMethod("getTreatment", signature = "methylDiff", function(x) {
return(x@treatment)
})
#' @rdname getTreatment-methods
#' @aliases getTreatment,methylDiff-method
setReplaceMethod("getTreatment", signature = "methylDiff", function(x, value) {
if(! ( length(x@treatment) == length(value) ) ){
stop("The new treatment vector is not valid, check the length of input")
} else {
x@treatment <- value
return(x)
}
})
#' @rdname getSampleID-methods
#' @aliases getSampleID,methylDiff-method
setMethod("getSampleID", signature = "methylDiff", function(x) {
return(x@sample.ids)
})
#' @rdname getSampleID-methods
#' @aliases getSampleID,methylDiff-method
setReplaceMethod("getSampleID", signature = "methylDiff", function(x, value) {
if(! ( length(value) == length(x@sample.ids) ) ){
stop("The vector of new sample ids is not valid, check the length of input")
} else {
x@sample.ids <- value
return(x)
}
})
##############################################################################
## CONVERTOR FUNCTIONS FOR methylDiff OBJECT
##############################################################################
setAs("methylDiff", "GRanges", function(from)
{
GRanges(seqnames=as.character(from$chr),ranges=IRanges(start=from$start,
end=from$end),
strand=from$strand,
pvalue = from$pvalue,
qvalue=from$qvalue,
meth.diff=from$meth.diff
)
})
### subset methylDiff
#' @aliases select,methylDiff-method
#' @rdname select-methods
setMethod("select", "methylDiff",
function(x, i)
{
if( max(i) > nrow(x) )
stop("subscript contains out-of-bounds indices")
new("methylDiff",getData(x)[i,],
sample.ids = x@sample.ids,
assembly = x@assembly,
context = x@context,
treatment=x@treatment,
destranded=x@destranded,
resolution=x@resolution)
}
)
#' @rdname extract-methods
#' @aliases [,methylDiff,ANY,ANY,ANY-method
#' @aliases extract,methylDiff,ANY-method
setMethod("[","methylDiff",
function(x,i,j){
#cat(missing(i),"\n",missing(j),"\n",missing(drop))
if(!missing(j)){
stop(paste("subsetting on columns is not allowed for",class(x),
"object\nif you want to do extraction on the data part",
"of the object use getData() first"),
call. = FALSE)
}
select(x,i)
}
)
#' @aliases selectByOverlap,methylDiff-method
#' @rdname selectByOverlap-methods
setMethod("selectByOverlap", c("methylDiff","GRanges"),
.selectByOverlap
)
#' get differentially methylated regions/bases based on cutoffs
#'
#' The function subsets a \code{\link{methylDiff}} or \code{\link{methylDiffDB}}
#' object in order to get
#' differentially methylated bases/regions
#' satisfying thresholds.
#'
#' @param .Object a \code{\link{methylDiff}} or \code{\link{methylDiffDB}} object
#' @param difference cutoff for absolute value of methylation percentage change
#' between test and control (default:25)
#' @param qvalue cutoff for qvalue of differential methylation statistic
#' (default:0.01)
#' @param type one of the "hyper","hypo" or "all" strings. Specifies what type
#' of differentially menthylated bases/regions should be returned.
#' For retrieving Hyper-methylated regions/bases type="hyper",
#' for hypo-methylated type="hypo" (default:"all")
#' @param chunk.size Number of rows to be taken as a chunk for processing the
#' \code{methylDiffDB} objects (default: 1e6)
#' @param save.db A Logical to decide whether the resulting object should be
#' saved as flat file database or not, default: see Details
#' @param ... optional Arguments used when save.db is TRUE
#'
#' \code{suffix}
#' A character string to append to the name of the output flat
#' file database,
#' only used if save.db is true, default actions: append
#' \dQuote{_type} to current filename
#' if database already exists or generate new file with
#' filename \dQuote{methylDiff_type}
#'
#' \code{dbdir}
#' The directory where flat file database(s) should be stored,
#' defaults
#' to getwd(), working directory for newly stored databases
#' and to same directory for already existing database
#'
#' \code{dbtype}
#' The type of the flat file database, currently only
#' option is "tabix"
#' (only used for newly stored databases)
#'
#' @return a methylDiff or methylDiffDB object containing the differential
#' methylated locations satisfying the criteria
#'
#' @examples
#'
#' data(methylKit)
#'
#' # get differentially methylated bases/regions with specific cutoffs
#' all.diff=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="all")
#'
#' # get hyper-methylated
#' hyper=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="hyper")
#'
#' # get hypo-methylated
#' hypo=getMethylDiff(methylDiff.obj,difference=25,qvalue=0.01,type="hypo")
#'
#' @section Details:
#' The parameter \code{chunk.size} is only used when working with
#' \code{methylDiffDB} objects,
#' as they are read in chunk by chunk to enable processing large-sized objects
#' which are stored as flat file database.
#' Per default the chunk.size is set to 1M rows, which should work for most
#' systems. If you encounter memory problems or
#' have a high amount of memory available feel free to adjust the \code{chunk.size}.
#'
#' The parameter \code{save.db} is per default TRUE for methylDB objects as
#' \code{methylDiffDB},
#' while being per default FALSE for \code{methylDiff}. If you wish to save
#' the result of an
#' in-memory-calculation as flat file database or if the size of the database
#' allows the calculation in-memory,
#' then you might want to change the value of this parameter.
#'
#' @export
#' @docType methods
#' @rdname getMethylDiff-methods
setGeneric(name="getMethylDiff", def=function(.Object,difference=25,qvalue=0.01,
type="all",chunk.size=1e6,
save.db=FALSE,...)
standardGeneric("getMethylDiff"))
#' @aliases getMethylDiff,methylDiff-method
#' @rdname getMethylDiff-methods
setMethod(f="getMethylDiff", signature="methylDiff",
definition=function(.Object,difference,qvalue,type,save.db=FALSE,...){
if(!save.db) {
if(type=="all"){
idx <- which((.Object$qvalue < qvalue) & (abs(.Object$meth.diff) > difference))
}else if(type=="hyper"){
idx <- which(.Object$qvalue<qvalue & (.Object$meth.diff) > difference)
}else if(type=="hypo"){
idx <- which(.Object$qvalue<qvalue & (.Object$meth.diff) < -1*difference)
}else{
stop("Wrong 'type' argument supplied for the function, it can be ",
"'hypo', 'hyper' or 'all' ")
}
new.obj=new("methylDiff",.Object[idx,],
sample.ids=.Object@sample.ids,assembly=.Object@assembly,
context=.Object@context,
treatment=.Object@treatment,destranded=.Object@destranded,
resolution=.Object@resolution)
return(new.obj)
} else {
# catch additional args
args <- list(...)
if( !( "dbdir" %in% names(args)) ){
dbdir <- .check.dbdir(getwd())
} else { dbdir <- .check.dbdir(args$dbdir) }
# if(!( "dbtype" %in% names(args) ) ){
# dbtype <- "tabix"
# } else { dbtype <- args$dbtype }
if(!( "suffix" %in% names(args) ) ){
suffix <- paste0("_",type)
} else {
suffix <- paste0("_",args$suffix)
}
# create methylDiffDB
if(type=="all"){
idx <- which(.Object$qvalue<qvalue & abs(.Object$meth.diff) > difference)
}else if(type=="hyper"){
idx <- which(.Object$qvalue<qvalue & (.Object$meth.diff) > difference)
}else if(type=="hypo"){
idx <- which(.Object$qvalue<qvalue & (.Object$meth.diff) < -1*difference)
}else{
stop("Wrong 'type' argument supplied for the function, it can be ",
"'hypo', 'hyper' or 'all' ")
}
new.obj= makeMethylDiffDB(df=.Object[idx,],
dbpath=dbdir,dbtype="tabix",sample.ids=.Object@sample.ids,
assembly=.Object@assembly,context=.Object@context,
destranded=.Object@destranded,treatment=.Object@treatment,
resolution=.Object@resolution,suffix=suffix )
return(new.obj)
}
})
##############################################################################
## PLOTTING FUNCTIONS FOR methylDiff OBJECT
##############################################################################
#' Get and plot the number of hyper/hypo methylated regions/bases per chromosome
#'
#' This function gets number of hyper/hypo methylated regions/bases from
#' \code{\link{methylDiff}} object.
#' It can also plot percentages of differentially methylated bases per chromosome.
#'
#' @param x a \code{\link{methylDiff}} object
#' @param plot TRUE|FALSE. If TRUE horizontal barplots for proportion of
#' hypo/hyper methylated bases/regions
#' @param qvalue.cutoff cutoff for q-value
#' @param meth.cutoff cutoff for percent methylation difference
#' @param exclude names of chromosomes to be excluded from plot
#' @param ... extra graphical parameters to be passed to \code{\link{barplot}}
#' function
#' @param keep.empty.chrom keep chromosome in list / plot, even if it contains
#' no hyper/hypo sites
#'
#' @return plots a piechart or a barplot for percentage of the target
#' features overlapping with annotation
#'
#' @examples
#'
#' data(methylKit)
#'
#' # get a list of differentially methylated bases/regions per chromosome and overall
#' diffMethPerChr(methylDiff.obj, plot=FALSE,qvalue.cutoff=0.01,
#' meth.cutoff=25,exclude=NULL)
#'
#' @export
#' @docType methods
#' @rdname diffMethPerChr-methods
setGeneric("diffMethPerChr", def=function(x,
plot=TRUE,
qvalue.cutoff=0.01,
meth.cutoff=25,
exclude=NULL,
keep.empty.chrom = FALSE,
...)
standardGeneric("diffMethPerChr"))
.diffMethPerChr <- function(data,qvalue.cutoff, meth.cutoff,
keep.empty.chrom = FALSE){
data <- as.data.table(data)
.setMethylDBNames(data,"methylDiffDB")
## silence R CMD Check Note
. = type = qvalue = meth.diff = NULL
data[, type := "none" ]
data[qvalue < qvalue.cutoff & meth.diff >= meth.cutoff, type := "hyper" ]
data[qvalue < qvalue.cutoff & meth.diff <= -meth.cutoff, type := "hypo" ]
## summarize number of hype and hyper
number = perc = .N = NULL
temp.hyper.hypo <- data[,
.(number = .N) ,
by = list(chr, type)][,
.(type,
number ,
perc = 100 * number / sum(number)),
by = chr][type != "none"]
empty.chrom <- setdiff(unique(data$chr), temp.hyper.hypo$chr)
if (length(empty.chrom) > 0 & keep.empty.chrom) {
## create empty result if no hyper or hypo found
temp.hyper.hypo <- rbind(temp.hyper.hypo,
data.table(
chr = empty.chrom,
type = c("hypo", "hyper"),
number = 0,
perc = 0
))
}
## merge hyper hypo per chromosome
dmc.hyper.hypo <- merge(
temp.hyper.hypo[type == "hyper",.(chr,number,perc)],
temp.hyper.hypo[type == "hypo",.(chr,number,perc)],
by = "chr",
all = TRUE
)
## replace NA with 0
dmc.hyper.hypo[is.na(dmc.hyper.hypo)] <- 0
names(dmc.hyper.hypo)=c("chr","number.of.hypermethylated",
"percentage.of.hypermethylated",
"number.of.hypomethylated",
"percentage.of.hypomethylated")
dmc.hyper.hypo$chr <- as.factor(dmc.hyper.hypo$chr)
return(as.data.frame(dmc.hyper.hypo))
}
.plotDiffMethPerChr <- function(dmc.hyper.hypo,exclude,qvalue.cutoff,meth.cutoff,...) {
if(!is.null(exclude)) {
dmc.hyper.hypo = dmc.hyper.hypo[!dmc.hyper.hypo$chr %in% exclude, ]
}
barplot(
t(as.matrix(data.frame(hyper=dmc.hyper.hypo[,3],
hypo=dmc.hyper.hypo[,5],
row.names=dmc.hyper.hypo[,1]) ))
,las=2,horiz=TRUE,col=c("magenta","aquamarine4"),
main=paste("% of hyper & hypo methylated regions per chromosome",sep=""),
xlab="% (percentage)",...)
mtext(side=3,paste("qvalue<",qvalue.cutoff,
" & methylation diff. >=",meth.cutoff,
" %",sep="") )
legend("topright",
legend=c("hyper","hypo"),
fill=c("magenta","aquamarine4"))
}
#' @aliases diffMethPerChr,methylDiff-method
#' @rdname diffMethPerChr-methods
setMethod("diffMethPerChr", signature(x = "methylDiff"),
function(x,plot,qvalue.cutoff, meth.cutoff,exclude,keep.empty.chrom,...){
x=getData(x)
# get per chrom percentages of hypo/ hyper
dmc.hyper.hypo <- .diffMethPerChr(
data = x,
qvalue.cutoff = qvalue.cutoff,
meth.cutoff = meth.cutoff,
keep.empty.chrom = keep.empty.chrom
)
# order the chromosomes
dmc.hyper.hypo=dmc.hyper.hypo[order(as.numeric(sub("chr","",dmc.hyper.hypo$chr))),]
# get global percentages of hypo/ hyper
dmc.hyper = 100 * sum(dmc.hyper.hypo$number.of.hypermethylated) / nrow(x)
dmc.hypo = 100 * sum(dmc.hyper.hypo$number.of.hypomethylated) / nrow(x)
all.hyper.hypo = data.frame(
number.of.hypermethylated = sum(dmc.hyper.hypo$number.of.hypermethylated),
percentage.of.hypermethylated = dmc.hyper,
number.of.hypomethylated = sum(dmc.hyper.hypo$number.of.hypomethylated),
percentage.of.hypomethylated = dmc.hypo
)
if (all(dmc.hyper.hypo$chr %in% exclude)) {
warning("Cannot plot figure, excluded all available chromosomes.")
plot <- FALSE
}
if(plot){
.plotDiffMethPerChr(dmc.hyper.hypo,exclude,qvalue.cutoff,meth.cutoff,...)
} else {
return(list(diffMeth.per.chr = dmc.hyper.hypo,
diffMeth.all = all.hyper.hypo))
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.