View source: R/TwoPart_MultiMS.R
subset_proteins | R Documentation |
Subset proteins into ones common to all datasets passed into the function and unique to each dataset. Note: for 3+ datasets no intermediate combinations of proteins are returned, only proteins common to all datasets, the rest are returned as unique to each dataset.
subset_proteins(mm_list, prot.info, prot_col_name)
mm_list |
list of matrices for each experiment, length = number of datasets to compare internal dataset dimentions: numpeptides x numsamples for each dataset |
prot.info |
list of protein and peptide mapping for each matrix in mm_list, in same order as mm_list |
prot_col_name |
column name in prot.info that contains protein identifiers that link all datasets together. Not that Protein IDs will differ across different organizms and cannot be used as the linking identifier. Function match_linker_ids() produces numeric identifyers that link all datasets together |
data frame with the following columns
list of dataframes of intensities for each of the datasets passed in with proteins present in all datasets
list of dataframes of metadata for each of the datasets passed in with proteins present in all datasets. Same order as sub_mm_list
list of dataframes of intensities not found in all datasets
ist of dataframes of metadata not found in all datasets
list of protein IDs commnon to all datasets
# Load mouse dataset data(mm_peptides) head(mm_peptides) # different from parameter names as R uses # outer name spaces if variable is undefined intsCols = 8:13 metaCols = 1:7 # reusing this variable m_logInts = make_intencities(mm_peptides, intsCols) # will reuse the name m_prot.info = make_meta(mm_peptides, metaCols) m_logInts = convert_log2(m_logInts) grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG')) set.seed(173) mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info) mm_m_ints_eig1$h.c # check the number of bias trends detected mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1) mm_prot.info = mm_m_ints_norm$normalized[,1:7] mm_norm_m = mm_m_ints_norm$normalized[,8:13] set.seed(131) imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info, pr_ppos=2, my.pi=0.05, compute_pi=FALSE) # Load human dataset data(hs_peptides) head(hs_peptides) intsCols = 8:13 metaCols = 1:7 # reusing this variable m_logInts = make_intencities(hs_peptides, intsCols) # will reuse the name m_prot.info = make_meta(hs_peptides, metaCols) m_logInts = convert_log2(m_logInts) grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG')) hs_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info) hs_m_ints_eig1$h.c # check the number of bias trends detected hs_m_ints_norm = eig_norm2(rv=hs_m_ints_eig1) hs_prot.info = hs_m_ints_norm$normalized[,1:7] hs_norm_m = hs_m_ints_norm$normalized[,8:13] set.seed(131) imp_hs = MBimpute(hs_norm_m, grps, prot.info=hs_prot.info, pr_ppos=2, my.pi=0.05, compute_pi=FALSE) # Multi-Matrix Model-based differential expression analysis # Set up needed variables mms = list() treats = list() protinfos = list() mms[[1]] = imp_mm$y_imputed mms[[2]] = imp_hs$y_imputed treats[[1]] = grps treats[[2]] = grps protinfos[[1]] = imp_mm$imp_prot.info protinfos[[2]] = imp_hs$imp_prot.info subset_data = subset_proteins(mm_list=mms, prot.info=protinfos, 'MatchedID') mms_mm_dd = subset_data$sub_unique_mm_list[[1]] protinfos_mm_dd = subset_data$sub_unique_prot.info[[1]] # DIfferential expression analysis for mouse specific protiens DE_mCG_CG_mm_dd = peptideLevel_DE(mms_mm_dd, grps, prot.info=protinfos_mm_dd, pr_ppos=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.