View source: R/TwoPart_MultiMS.R
plot_volcano | R Documentation |
Function plots fold changes and p-values as a volcano plot. Two lines are plotted for the p-value cutoff at p = PV_cutoff (solid line) and p = 0.1 (dashed line).
plot_volcano(FC, PV, FC_cutoff = 2, PV_cutoff = 0.05, figtitle = "")
FC |
vector of fold changes |
PV |
vctor of p-values, same lenght as FC |
FC_cutoff |
fold change cutoff where to draw vertical cutoff lines, default = 2 |
PV_cutoff |
p-value cutoff where to draw a horisontal cutoff line, default ==.05 |
figtitle |
title to display at the top of the figure, default = ” |
Nil
data(mm_peptides) head(mm_peptides) intsCols = 8:13 # different from parameter names as # R uses outer name spaces if variable is undefined metaCols = 1:7 m_logInts = make_intencities(mm_peptides, intsCols) m_prot.info = make_meta(mm_peptides, metaCols) m_logInts = convert_log2(m_logInts) # Normalize data grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG')) set.seed(123) mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info) mm_m_ints_eig1$h.c # check the number of bias trends detected # Impute missing values mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1) mm_prot.info = mm_m_ints_norm$normalized[,1:7] mm_norm_m = mm_m_ints_norm$normalized[,8:13] set.seed(125) # needed for reproducibility of imputation imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info, pr_ppos=2, my.pi=0.05, compute_pi=FALSE) DE_res = peptideLevel_DE(imp_mm$y_imputed, grps, imp_mm$imp_prot.info, pr_ppos=2) plot_volcano(DE_res$FC, DE_res$BH_P_val, FC_cutoff=1.5, PV_cutoff=.05, figtitle='Mouse DE')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.