View source: R/peptideLevel_DE.R
peptideLevel_DE | R Documentation |
Model-Based differential expression analysis is performed on peptide level as desribed in Karpievitch et al. 2009 "A statistical framework for protein quantitation in bottom-up MS-based proteomics" Bioinformatics.
peptideLevel_DE(mm, treatment, prot.info, pr_ppos = 2)
mm |
m x n matrix of intensities, num peptides x num samples |
treatment |
vector indicating the treatment group of each sample ie [1 1 1 1 2 2 2 2...] |
prot.info |
2+ colum data frame of peptide ID, protein ID, etc. columns |
pr_ppos |
- column index for protein ID in prot.info. Can restrict to be #2... |
A data frame with the following columns:
protein identification information taken from prot.info, 1 column used to identify proteins
fold change
p-value for the comparison between 2 groups (2 groups only here)
Benjamini-Hochberg adjusted p-values
data(mm_peptides) head(mm_peptides) # different from parameter names as R uses outer # name spaces if variable is undefined intsCols = 8:13 metaCols = 1:7 # reusing this variable m_logInts = make_intencities(mm_peptides, intsCols) m_prot.info = make_meta(mm_peptides, metaCols) m_logInts = convert_log2(m_logInts) grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG')) set.seed(135) # results rarely vary due to the random seed for EigenMS mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info) mm_m_ints_eig1$h.c # check the number of bias trends detected mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1) mm_prot.info = mm_m_ints_norm$normalized[,1:7] mm_norm_m = mm_m_ints_norm$normalized[,8:13] set.seed(131) # important to reproduce the results later imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info, pr_ppos=2, my.pi=0.05, compute_pi=FALSE) DE_res = peptideLevel_DE(imp_mm$y_imputed, grps, mm_m_ints_norm$normalized[,metaCols], pr_ppos=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.