R/sample_filtering.R

Defines functions factor_sample_filter metric_sample_filter simple_FNR_params

Documented in factor_sample_filter metric_sample_filter simple_FNR_params

#' Fit Simple False-Negative Model
#' 
#' Fits a logistic regression model of false negative observations as a
#' function of expression level, using a set of positive control (ubiquitously
#' expressed) genes
#' 
#' @details logit(Probability of False Negative) ~ a + b*(median log-expr)
#'   
#' @param expr matrix A matrix of transcript-proportional units (genes in rows,
#'   cells in columns).
#' @param pos_controls A logical, numeric, or character vector indicating 
#'   control genes that will be used to compute false-negative rate 
#'   characteristics. User must provide at least 2 control genes.
#' @param fn_tresh Inclusive threshold for negative detection. Default 0.01. 
#'   fn_tresh must be non-negative.
#'   
#' @return A matrix of logistic regression coefficients corresponding to glm 
#'   fits in each sample (a and b in columns 1 and 2 respectively). If the a &
#'   b fit does not converge, b is set to zero and only a is estimated.
#'   
#' @importFrom boot logit
#' @importFrom matrixStats rowMedians
#' @export
#' 
#' @examples
#' mat <- matrix(rpois(1000, lambda = 3), ncol=10)
#' mat = mat * matrix(1-rbinom(1000, size = 1, prob = .01), ncol=10)
#' fnr_out = simple_FNR_params(mat,pos_controls = 1:10)
#' 

simple_FNR_params = function(expr, pos_controls, fn_tresh = 0.01) {
  stopifnot(!any(is.na(pos_controls)))
  
  if (is.logical(pos_controls)) {
    if (length(pos_controls) != NROW(expr)) {
      stop("If pos_controls is logical, it should have one element per gene.")
    } else if (sum(pos_controls) < 2) {
      stop("User must provide at least 2 positive control genes.")
    }
  } else {
    if (length(pos_controls) < 2) {
      stop("User must provide at least 2 positive control genes.")
    }
  }
  
  if (fn_tresh < 0) {
    stop("fn_tresh must be non-negative")
  }
  
  pos_expr = expr[pos_controls,]  # Selecting positive-control genes
  is_drop = pos_expr <= fn_tresh  # Identify false negatives
  pos_expr[is_drop] = NA          # Set false negatives to NA
  drop_outs = 0 + is_drop         # Numeric drop-out state
  drop_rate = colMeans(drop_outs) # Total drop-out rate per sample
  
  # Median log-expression in positive observations
  mu_obs = log(rowMedians(pos_expr, na.rm = TRUE))
  if (any(is.na(mu_obs))) {
    stop(
      paste0(
        "Median log-expression in positive ",
        "observations NA for some positive control gene/s"
      )
    )
  }
  
  # Logistic Regression Model of FNR
  logistic_coef = matrix(0, ncol(drop_outs), 2)
  for (si in seq_len(ncol(drop_outs))) {
    fit = suppressWarnings(glm(cbind(drop_outs[, si],
                                     1 - drop_outs[, si]) ~ mu_obs,
                               family = binomial(logit)))
    if (fit$converged) {
      logistic_coef[si,] = fit$coefficients
    } else {
      logistic_coef[si, 1] = logit(drop_rate[si])
    }
  }
  return(logistic_coef)
}

#'Metric-based Sample Filtering: Function to filter single-cell RNA-Seq 
#'libraries.
#'
#'This function returns a sample-filtering report for each cell in the input 
#'expression matrix, describing which filtering criteria are satisfied.
#'
#'@details For each primary criterion (metric), a sample is evaluated based on
#'  4 sub-criteria: 1) Hard (encoded) threshold 2) Adaptive thresholding via
#'  sd's from the mean 3) Adaptive thresholding via mad's from the median 4)
#'  Adaptive thresholding via sd's from the mean (after mixture modeling) A
#'  sample must pass all sub-criteria to pass the primary criterion.
#'  
#'@param expr matrix The data matrix (genes in rows, cells in columns).
#'@param nreads A numeric vector representing number of reads in each library.
#'  Default to `colSums` of `expr`.
#'@param ralign A numeric vector representing the proportion of reads aligned
#'  to the reference genome in each library. If NULL, filtered_ralign will be
#'  returned NA.
#'@param gene_filter A logical vector indexing genes that will be used to 
#'  compute library transcriptome breadth. If NULL, filtered_breadth will be 
#'  returned NA.
#'@param pos_controls A logical, numeric, or character vector indicating 
#'  positive control genes that will be used to compute false-negative rate 
#'  characteristics. If NULL, filtered_fnr will be returned NA.
#'@param scale. logical. Will expression be scaled by total expression for FNR 
#'  computation? Default = FALSE
#'@param glen Gene lengths for gene-length normalization (normalized data used 
#'  in FNR computation).
#'@param AUC_range An array of two values, representing range over which FNR 
#'  AUC will be computed (log(expr_units)). Default c(0,15)
#'@param zcut A numeric value determining threshold Z-score for sd, mad, and 
#'  mixture sub-criteria. Default 1. If NULL, only hard threshold sub-criteria 
#'  will be applied.
#'@param mixture A logical value determining whether mixture modeling 
#'  sub-criterion will be applied per primary criterion (metric). If true, a
#'  dip test will be applied to each metric. If a metric is multimodal, it is
#'  fit to a two-component normal mixture model. Samples deviating zcut sd's
#'  from optimal mean (in the inferior direction), have failed this 
#'  sub-criterion.
#'@param dip_thresh A numeric value determining dip test p-value threshold. 
#'  Default 0.05.
#'@param hard_nreads numeric. Hard (lower bound on) nreads threshold. Default 
#'  25000.
#'@param hard_ralign numeric. Hard (lower bound on) ralign threshold. Default 
#'  15.
#'@param hard_breadth numeric. Hard (lower bound on) breadth threshold. Default
#'  0.2.
#'@param hard_auc numeric. Hard (upper bound on) fnr auc threshold. Default 10.
#'@param suff_nreads numeric. If not null, serves as an overriding upper bound 
#'  on nreads threshold.
#'@param suff_ralign numeric. If not null, serves as an overriding upper bound 
#'  on ralign threshold.
#'@param suff_breadth numeric. If not null, serves as an overriding upper bound
#'  on breadth threshold.
#'@param suff_auc numeric. If not null, serves as an overriding lower bound on 
#'  fnr auc threshold.
#'@param plot logical. Should a plot be produced?
#'@param hist_breaks hist() breaks argument. Ignored if `plot=FALSE`.
#'@param ... Arguments to be passed to methods.
#'  
#'@return A list with the following elements: \itemize{ \item{filtered_nreads}{
#'  Logical. Sample has too few reads.} \item{filtered_ralign}{ Logical. Sample
#'  has too few reads aligned.} \item{filtered_breadth}{ Logical. Samples has 
#'  too few genes detected (low breadth).} \item{filtered_fnr}{ Logical. Sample
#'  has a high FNR AUC.} }
#'  
#'@importFrom mixtools normalmixEM
#'@importFrom diptest dip.test
#'@importFrom boot inv.logit
#'@export
#'
#' @examples
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10)
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="")
#' qc = as.matrix(cbind(colSums(mat),colSums(mat > 0)))
#' rownames(qc) = colnames(mat)
#' colnames(qc) = c("NCOUNTS","NGENES")
#' mfilt = metric_sample_filter(expr = mat,nreads = qc[,"NCOUNTS"],
#'    plot = TRUE, hard_nreads = 0)
#'


metric_sample_filter = function(expr,
                                nreads = colSums(expr),
                                ralign = NULL,
                                gene_filter = NULL,
                                pos_controls = NULL,
                                scale. = FALSE,
                                glen = NULL,
                                AUC_range = c(0, 15),
                                zcut = 1,
                                mixture = TRUE,
                                dip_thresh = 0.05,
                                hard_nreads = 25000,
                                hard_ralign = 15,
                                hard_breadth = 0.2,
                                hard_auc = 10,
                                suff_nreads = NULL,
                                suff_ralign = NULL,
                                suff_breadth = NULL,
                                suff_auc = NULL,
                                plot = FALSE,
                                hist_breaks = 10,
                                ...) {
  criterion_count = 0
  
  mix_plot = list(
    nreads = NULL,
    ralign = NULL,
    breadth = NULL,
    fnr = NULL
  )
  
  ### ----- Primary Criterion 1) Number of Reads. -----
  
  if (!is.null(nreads)) {
    criterion_count = 1
    
    logr = log10(nreads + 1)
    
    LOGR_CUTOFF = log10(hard_nreads + 1) # Hard Sub-Criterion
    
    if (!is.null(zcut)) {
      LOGR_CUTOFF = max(mean(logr) - zcut * sd(logr), LOGR_CUTOFF)
      # SD Sub-Criterion
      LOGR_CUTOFF = max(median(logr) - zcut * mad(logr), LOGR_CUTOFF)
      # MAD Sub-Criterion
      
      if (mixture) {
        # Mixture SD Sub-Criterion
        
        is.multimodal = dip.test(logr)$p.value < dip_thresh
        if (is.multimodal) {
          capture.output(mixmdl <- normalmixEM(logr, k = 2))
          mix_plot$nreads = mixmdl
          component = which(mixmdl$mu %in% max(mixmdl$mu))
          LOGR_CUTOFF = max(mixmdl$mu[component] -
                              zcut * mixmdl$sigma[component], LOGR_CUTOFF)
        }
      }
      
      if (!is.null(suff_nreads)) {
        LOGR_CUTOFF = min(LOGR_CUTOFF, log10(suff_nreads + 1))
      }
    }
    filtered_nreads = logr < LOGR_CUTOFF
  } else{
    filtered_nreads = NA
  }
  
  ## ----- Primary Criterion 2) Ratio of reads aligned. -----
  
  if (!is.null(ralign)) {
    criterion_count = criterion_count + 1
    
    RALIGN_CUTOFF = hard_ralign
    
    if (!is.null(zcut)) {
      RALIGN_CUTOFF = max(mean(ralign) - zcut * sd(ralign), RALIGN_CUTOFF)
      # SD Sub-Criterion
      RALIGN_CUTOFF = max(median(ralign) - zcut * mad(ralign), RALIGN_CUTOFF)
      # MAD Sub-Criterion
      
      if (mixture) {
        # Mixture SD Sub-Criterion
        
        is.multimodal = dip.test(ralign)$p.value < dip_thresh
        
        if (is.multimodal) {
          capture.output(mixmdl <- normalmixEM(ralign, k = 2))
          mix_plot$ralign = mixmdl
          component = which(mixmdl$mu %in% max(mixmdl$mu))
          RALIGN_CUTOFF = max(mixmdl$mu[component]
                              - zcut * mixmdl$sigma[component],
                              RALIGN_CUTOFF)
        }
      }
      
      if (!is.null(suff_ralign)) {
        RALIGN_CUTOFF = min(RALIGN_CUTOFF, suff_ralign)
      }
    }
    filtered_ralign = ralign < RALIGN_CUTOFF
  } else{
    filtered_ralign = NA
  }
  
  ## ----- Primary Criterion 3) Transcriptome Breadth:
  ## Fraction of filtered genes detected. -----
  
  if (!is.null(gene_filter)) {
    criterion_count = criterion_count + 1
    
    breadth = as.numeric(colMeans(expr[gene_filter, ] > 0))
    
    BREADTH_CUTOFF = hard_breadth
    
    if (!is.null(zcut)) {
      BREADTH_CUTOFF = max(mean(breadth) - zcut * sd(breadth),
                           BREADTH_CUTOFF) # SD Sub-Criterion
      BREADTH_CUTOFF = max(median(breadth) - zcut * mad(breadth),
                           BREADTH_CUTOFF) # MAD Sub-Criterion
      
      if (mixture) {
        # Mixture SD Sub-Criterion
        
        is.multimodal = dip.test(breadth)$p.value < dip_thresh
        
        if (is.multimodal) {
          capture.output(mixmdl <- normalmixEM(breadth, k = 2))
          mix_plot$breadth = mixmdl
          component = which(mixmdl$mu %in% max(mixmdl$mu))
          BREADTH_CUTOFF = max(mixmdl$mu[component] -
                                 zcut * mixmdl$sigma[component],
                               BREADTH_CUTOFF)
        }
      }
      
      if (!is.null(suff_breadth)) {
        BREADTH_CUTOFF = min(BREADTH_CUTOFF, suff_breadth)
      }
    }
    filtered_breadth = breadth < BREADTH_CUTOFF
  } else{
    filtered_breadth = NA
  }
  
  ## ----- Primary Criterion 4) FNR AUC. -----
  
  if (!is.null(pos_controls)) {
    criterion_count = criterion_count + 1
    
    # Normalize matrix for FNR estimation
    if (scale.) {
      nexpr = mean(colSums(expr)) * t(t(expr) / colSums(expr))
    } else{
      nexpr = expr
    }
    if (!is.null(glen)) {
      nexpr = mean(glen) * nexpr / glen
    }
    
    # Compute FNR AUC
    logistic_coef = simple_FNR_params(expr = nexpr,
                                      pos_controls = pos_controls)
    AUC = NULL
    for (si in 1:dim(expr)[2]) {
      if (logistic_coef[si, 2] != 0) {
        AUC[si] = log(exp(logistic_coef[si, 1] +
                            logistic_coef[si, 2] * AUC_range[2]) +
                        1) / logistic_coef[si, 2] -
          log(exp(logistic_coef[si, 1] +
                    logistic_coef[si, 2] * AUC_range[1]) +
                1) / logistic_coef[si, 2]
      } else {
        AUC[si] = inv.logit(logistic_coef[si, 1]) * (AUC_range[2] -
                                                       AUC_range[1])
      }
    }
    
    AUC_CUTOFF = hard_auc
    
    if (!is.null(zcut)) {
      AUC_CUTOFF = min(mean(AUC) + zcut * sd(AUC), AUC_CUTOFF)
      # SD Sub-Criterion
      AUC_CUTOFF = min(median(AUC) + zcut * mad(AUC), AUC_CUTOFF)
      # MAD Sub-Criterion
      
      if (mixture) {
        # Mixture SD Sub-Criterion
        
        is.multimodal = dip.test(AUC)$p.value < dip_thresh
        
        if (is.multimodal) {
          capture.output(mixmdl <- normalmixEM(AUC, k = 2))
          mix_plot$fnr = mixmdl
          component = which(mixmdl$mu %in% min(mixmdl$mu))
          AUC_CUTOFF = min(mixmdl$mu[component] +
                             zcut * mixmdl$sigma[component], AUC_CUTOFF)
        }
      }
      
      if (!is.null(suff_auc)) {
        AUC_CUTOFF = max(AUC_CUTOFF, suff_auc)
      }
    }
    filtered_fnr = AUC > AUC_CUTOFF
  } else{
    filtered_fnr = NA
  }
  
  ## ----- Plotting -----
  
  if (plot & criterion_count > 0) {
    is_bad = rep(FALSE, dim(expr)[2])
    
    op <- par(mfcol = c(criterion_count, 2))
    on.exit(par(op))
    
    if (!is.null(nreads)) {
      is_bad = filtered_nreads
      if (!is.null(mix_plot$nreads)) {
        nm_obj = mix_plot$nreads
        plot(
          nm_obj,
          2,
          main2 = paste0(
            "nreads: Thresh = ",
            signif(LOGR_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_nreads),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab2 = "log10(NREADS+1)",
          breaks = hist_breaks
        )
      } else{
        hist(
          logr,
          main = paste0(
            "nreads: Thresh = ",
            signif(LOGR_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_nreads),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab = "log10(NREADS+1)",
          breaks = hist_breaks
        )
      }
      abline(v = log10(hard_nreads + 1),
             col = "yellow",
             lty = 1)
      abline(v = LOGR_CUTOFF, col = "blue", lty = 2)
    }
    
    if (!is.null(ralign)) {
      is_bad = is_bad | filtered_ralign
      if (!is.null(mix_plot$ralign)) {
        nm_obj = mix_plot$ralign
        plot(
          nm_obj,
          2,
          main2 = paste0(
            "ralign: Thresh = ",
            signif(RALIGN_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_ralign),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab2 = "RALIGN",
          breaks = hist_breaks
        )
      } else{
        hist(
          ralign,
          main = paste0(
            "ralign: Thresh = ",
            signif(RALIGN_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_ralign),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab = "RALIGN",
          breaks = hist_breaks
        )
      }
      abline(v = hard_ralign, col = "yellow", lty = 1)
      abline(v = RALIGN_CUTOFF, col = "blue", lty = 2)
    }
    
    if (!is.null(gene_filter)) {
      is_bad = is_bad | filtered_breadth
      if (!is.null(mix_plot$breadth)) {
        nm_obj = mix_plot$breadth
        plot(
          nm_obj,
          2,
          main2 = paste0(
            "breadth: Thresh = ",
            signif(BREADTH_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_breadth),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab2 = "BREADTH",
          breaks = hist_breaks
        )
      } else{
        hist(
          breadth,
          main = paste0(
            "breadth: Thresh = ",
            signif(BREADTH_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_breadth),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab = "BREADTH",
          breaks = hist_breaks
        )
      }
      abline(v = hard_breadth, col = "yellow", lty = 1)
      abline(v = BREADTH_CUTOFF, col = "blue", lty = 2)
    }
    
    if (!is.null(pos_controls)) {
      is_bad = is_bad | filtered_fnr
      if (!is.null(mix_plot$fnr)) {
        nm_obj = mix_plot$fnr
        plot(
          nm_obj,
          2,
          main2 = paste0(
            "auc: Thresh = ",
            signif(AUC_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_fnr),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab2 = "FNR AUC",
          breaks = hist_breaks
        )
      } else{
        hist(
          AUC,
          main = paste0(
            "auc: Thresh = ",
            signif(AUC_CUTOFF, 3),
            " , Rm = ",
            sum(filtered_fnr),
            " , Tot_Rm = ",
            sum(is_bad)
          ),
          xlab = "FNR AUC",
          breaks = hist_breaks
        )
      }
      abline(v = hard_auc, col = "yellow", lty = 1)
      abline(v = AUC_CUTOFF, col = "blue", lty = 2)
    }
    
    if (!is.null(nreads)) {
      hist(
        logr[!is_bad],
        main = paste0("nreads: Tot = ",
                      sum(!is_bad)),
        xlab = "log10(NREADS+1)",
        breaks = hist_breaks
      )
    }
    if (!is.null(ralign)) {
      hist(
        ralign[!is_bad],
        main = paste0("ralign: Tot = ",
                      sum(!is_bad)),
        xlab = "RALIGN",
        breaks = hist_breaks
      )
    }
    if (!is.null(gene_filter)) {
      hist(
        breadth[!is_bad],
        main = paste0("breadth: Tot = ",
                      sum(!is_bad)),
        xlab = "BREADTH",
        breaks = hist_breaks
      )
    }
    if (!is.null(pos_controls)) {
      hist(
        AUC[!is_bad],
        main = paste0("auc: Tot = ", sum(!is_bad)),
        xlab = "FNR AUC",
        breaks = hist_breaks
      )
    }
  }
  
  return(
    list(
      filtered_nreads = filtered_nreads,
      filtered_ralign = filtered_ralign,
      filtered_breadth = filtered_breadth,
      filtered_fnr = filtered_fnr
    )
  )
}

#' Factor-based Sample Filtering: Function to filter single-cell RNA-Seq 
#' libraries.
#' 
#' This function returns a sample-filtering report for each cell in the input 
#' expression matrix, describing whether it passed filtering by factor-based 
#' filtering, using PCA of quality metrics.
#' 
#' @details None
#'   
#' @param expr matrix The data matrix (genes in rows, cells in columns).
#' @param qual matrix Quality metric data matrix (cells in rows, metrics in 
#'   columns).
#' @param gene_filter Logical vector indexing genes that will be used for PCA. 
#'   If NULL, all genes are used.
#' @param max_exp_pcs numeric number of expression PCs used in quality metric 
#'   selection. Default 5.
#' @param qual_select_q_thresh numeric. q-value threshold for 
#'   quality/expression correlation significance tests. Default 0.01
#' @param force_metrics logical. If not NULL, indexes quality metric to be 
#'   forcefully included in quality PCA.
#' @param good_metrics logical. If not NULL, indexes quality metric that 
#'   indicate better quality when of higher value.
#' @param min_qual_variance numeric. Minimum proportion of selected quality 
#'   variance addressed in filtering. Default 0.70
#' @param zcut A numeric value determining threshold Z-score for sd, mad, and 
#'   mixture sub-criteria. Default 1.
#' @param mixture A logical value determining whether mixture modeling 
#'   sub-criterion will be applied per primary criterion (quality score). If 
#'   true, a dip test will be applied to each quality score. If a metric is 
#'   multimodal, it is fit to a two-component normal mixture model. Samples 
#'   deviating zcut sd's from optimal mean (in the inferior direction), have 
#'   failed this sub-criterion.
#' @param dip_thresh A numeric value determining dip test p-value threshold. 
#'   Default 0.05.
#' @param plot logical. Should a plot be produced?
#' @param hist_breaks hist() breaks argument. Ignored if `plot=FALSE`.
#'   
#' @return A logical, representing samples passing factor-based filter.
#'   
#' @importFrom mixtools normalmixEM
#' @importFrom diptest dip.test
#' @import gplots
#' @export
#' 
#' @examples
#' mat <- matrix(rpois(1000, lambda = 5), ncol=10)
#' colnames(mat) <- paste("X", 1:ncol(mat), sep="")
#' qc = as.matrix(cbind(colSums(mat),colSums(mat > 0)))
#' rownames(qc) = colnames(mat)
#' colnames(qc) = c("NCOUNTS","NGENES")
#' mfilt = factor_sample_filter(expr = mat,
#'     qc, plot = TRUE,qual_select_q_thresh = 1)
#' 


factor_sample_filter = function(expr,
                                qual,
                                gene_filter = NULL,
                                max_exp_pcs = 5,
                                qual_select_q_thresh = 0.01,
                                force_metrics = NULL,
                                good_metrics = NULL,
                                min_qual_variance = 0.7,
                                zcut = 1,
                                mixture = TRUE,
                                dip_thresh = .01,
                                plot = FALSE,
                                hist_breaks = 20) {
  if (any(is.na(qual))) {
    stop("Quality matrix contains NA values")
  }
  
  # Gene filter vector
  if (is.null(gene_filter)) {
    gene_filter = rep(TRUE, dim(expr)[1])
  }
  
  ## ----- Expression PCs (based on high-quality genes) -----
  pc = prcomp(t(log1p(expr[gene_filter, ])),
              center = TRUE, scale = TRUE)
  
  ## ----- Quality PCs -----
  cors = cor(pc$x[, 1:max_exp_pcs], qual, method = "spearman")
  z = sqrt((dim(pc$x)[1] - 3) / 1.06) * (1 / 2) * log((1 + cors) / (1 -
                                                                      cors))
  p = 2 * pnorm(-abs(z))
  to_keep = p.adjust(p, method = "BH") < qual_select_q_thresh
  to_keep_vec = colSums(matrix(to_keep, nrow =  max_exp_pcs)) > 0
  
  if (is.null(good_metrics)) {
    good_metrics = rep(FALSE, dim(qual)[2])
  }
  
  # Introduce forced metrics
  if (!is.null(force_metrics)) {
    to_keep_vec =  to_keep_vec | force_metrics
  }
  
  if (sum(to_keep_vec) == 0) {
    warning("No quality metrics were selected. All samples pass filter.")
    return(rep(TRUE, dim(expr)[2]))
  }
  
  keep_quals = qual[, to_keep_vec]
  
  qpc = prcomp(keep_quals, center = TRUE, scale. = TRUE)
  
  csum = cumsum((qpc$sdev ^ 2) / sum(qpc$sdev ^ 2))
  
  if (plot) {
    plot(csum, main = "Cumulative Quality PC Variance",
         ylab = "Fraction of Total Variance")
    abline(h = min_qual_variance, lty = 2, col = "red")
  }
  num_qual_pcs = which(csum > min_qual_variance)[1]
  
  if (plot) {
    op <- par(mfrow = c(2, 1))
    on.exit(par(op))
    for (i in 1:num_qual_pcs) {
      hist(
        qpc$x[, i],
        breaks = hist_breaks,
        main = paste0("Distribution of Quality PC ", i),
        xlab = paste0("Qual PC", i)
      )
      barplot(
        abs(qpc$rotation[, i]),
        col = c("red", "green")[1 + (qpc$rotation[, i] > 0)],
        cex.names = .25,
        horiz = TRUE,
        las = 1,
        main = "Loadings"
      )
    }
  }
  
  if (plot) {
    heatmap.2(
      cor(keep_quals),
      key.title = "",
      key.xlab = "Spearman Corr.",
      density.info = 'none',
      trace = 'none',
      margins = c(20, 20),
      cexRow = .7,
      cexCol = .7
    )
  }
  
  # Only perform filtering when zcut is not null
  if (!is.null(zcut)) {
    # Initializing sample removal vector
    to_remove = rep(FALSE, dim(expr)[2])
    
    # Check if "good" metrics have been selected -> if filtering is signed
    is_signed = sum(to_keep_vec & good_metrics) > 0
    
    if (!is_signed) {
      warning("No good metrics were selected. Unsigned filtering applied.")
    }
    
    # Loop over quality PCs until we've covered
    # min_qual_variance of the quality variance
    for (i in 1:num_qual_pcs) {
      # Quality Score
      qscore = qpc$x[, i]
      
      # Signed Quality Score
      if (is_signed) {
        qscore = qscore *
          median(sign(qpc$rotation[, i][good_metrics[to_keep_vec]]))
      }
      
      # Simple thresholds
      CUTOFF = median(qscore) - zcut * mad(qscore)
      CUTOFF = max(mean(qscore) - zcut * sd(qscore), CUTOFF)
      
      # Reverse thresholds
      if (!is_signed) {
        RCUTOFF = median(qscore) + zcut * mad(qscore)
        RCUTOFF = min(mean(qscore) + zcut * sd(qscore), RCUTOFF)
      }
      
      # Mixture model threshold (Signed Only!)
      if (mixture && is_signed) {
        is.multimodal = dip.test(qscore)$p.value < dip_thresh
        
        if (is.multimodal) {
          mixmdl = normalmixEM(qscore, k = 2)
          component = which(mixmdl$mu %in% max(mixmdl$mu))
          CUTOFF = max(mixmdl$mu[component] -
                         zcut * mixmdl$sigma[component], CUTOFF)
          
        }
      }
      if (plot) {
        par(mfrow = c(1, 2))
        hist(
          qscore,
          breaks = hist_breaks,
          main = paste0("Distribution of Quality Score ", i),
          xlab = paste0("Qual Score ", i)
        )
        abline(v = CUTOFF,
               lty = 2,
               col = "red")
        if (!is_signed) {
          abline(v = RCUTOFF,
                 lty = 2,
                 col = "red")
        }
        
        if (i == num_qual_pcs) {
          # Exceeds minimum quality of variance - last filter
          
          if (is_signed) {
            to_remove = to_remove | (qscore < CUTOFF)
            hist(
              qpc$x[, i][!(qscore < CUTOFF)],
              breaks = hist_breaks,
              main = paste0(
                "Thresh = ",
                signif(CUTOFF, 3),
                ", Rm = ",
                sum(qscore < CUTOFF),
                ", Tot Rm = ",
                sum(to_remove)
              ),
              xlab = paste0("Qual Score ", i)
            )
          } else{
            to_remove = to_remove | ((qscore < CUTOFF) | (qscore > RCUTOFF))
            hist(
              qpc$x[, i][!((qscore < CUTOFF) | (qscore > RCUTOFF))],
              breaks = hist_breaks,
              main = paste0(
                "Threshs = ",
                signif(CUTOFF, 3),
                "/",
                signif(RCUTOFF, 3),
                ", Rm = ",
                sum((qscore < CUTOFF) |
                      (qscore > RCUTOFF)),
                ", Tot Rm = ",
                sum(to_remove)
              ),
              xlab = paste0("Qual Score ", i)
            )
          }
          
          break()
          
        } else{
          if (is_signed) {
            to_remove = to_remove | (qscore < CUTOFF)
            hist(
              qpc$x[, i][!(qscore < CUTOFF)],
              breaks = hist_breaks,
              main = paste0(
                "Thresh = ",
                signif(CUTOFF, 3),
                ", Rm = ",
                sum(qscore < CUTOFF)
              ),
              xlab = paste0("Qual Score ", i)
            )
          } else{
            to_remove = to_remove | ((qscore < CUTOFF) | (qscore > RCUTOFF))
            hist(
              qpc$x[, i][!((qscore < CUTOFF) | (qscore > RCUTOFF))],
              breaks = hist_breaks,
              main = paste0(
                "Threshs = ",
                signif(CUTOFF, 3),
                "/",
                signif(RCUTOFF, 3),
                ", Rm = ",
                sum((qscore < CUTOFF) |
                      (qscore > RCUTOFF))
              ),
              xlab = paste0("Qual Score ", i)
            )
          }
        }
      }
      
    }
    
    return(!to_remove)
  } else{
    warning("No z-cutoff specified, thus no filtering results returned.")
    return(NA)
  }
}
YosefLab/scone documentation built on Oct. 21, 2024, 4:39 p.m.