print_mat = function(maf, genes, removeNonMutated = TRUE, colors = NULL,
bgCol = '#ecf0f1', borderCol = 'white', fontSize = 1,
plot2 = FALSE, test = FALSE, clinicalFeatures = NULL, sampleOrder = NULL,
additionalFeature = NULL, additionalFeaturePch = 20, additionalFeatureCol = "white", additionalFeatureCex = 0.9,
annotationDat = NULL, annotationOrder = NULL, annotationColor = NULL,
sortByAnnotation = FALSE, showBarcodes = FALSE, barcodemar = 4,genemar = 1,
title = NULL, title_size = 1.2, barcode_size = 0.4, sepwd_samples = 0.1, sepwd_genes = 0.1){
tsbs = levels(getSampleSummary(x = maf)[,Tumor_Sample_Barcode])
genes = unique(as.character(genes))
om = createOncoMatrix(m = maf, g = genes)
if(is.null(om)){
#nsamps = as.numeric(maf@summary[ID %in% 'Samples', summary])
nsamps = length(tsbs)
oncoMatrix = matrix(data = "", nrow = length(genes), ncol = nsamps)
numericMatrix = matrix(data = 0, nrow = length(genes), ncol = nsamps)
colnames(oncoMatrix) = colnames(numericMatrix) = tsbs
rownames(oncoMatrix) = rownames(numericMatrix) = genes
om = list(numericMatrix = numericMatrix, oncoMatrix =oncoMatrix)
}
mat_origin = om$oncoMatrix
numMat = om$numericMatrix
genes.missing = genes[!genes %in% rownames(mat_origin)]
genes.present = genes[genes %in% rownames(mat_origin)]
if(length(genes.present) > 0){
genes.missing.mat = t(matrix(data = '', ncol = ncol(numMat), nrow = length(genes.missing)))
genes.missing.numat = t(matrix(data = 0, ncol = ncol(numMat), nrow = length(genes.missing)))
colnames(genes.missing.mat) = genes.missing
colnames(genes.missing.numat) = genes.missing
mat_origin = rbind(mat_origin, t(genes.missing.mat))
numMat = rbind(numMat, t(genes.missing.numat))
}
#remove nonmutated samples to improve visualization
if(!removeNonMutated){
tsb.include = matrix(data = 0, nrow = length(genes),
ncol = length(tsbs[!tsbs %in% colnames(numMat)]))
tsb.include.char = matrix(data = '', nrow = length(genes),
ncol = length(tsbs[!tsbs %in% colnames(numMat)]))
colnames(tsb.include) = colnames(tsb.include.char) = tsbs[!tsbs %in% colnames(numMat)]
rownames(tsb.include) = rownames(tsb.include.char) = rownames(numMat)
numMat = cbind(numMat, tsb.include)
mat_origin = cbind(mat_origin, tsb.include.char)
}
numMat = numMat[genes, , drop = FALSE]
mat_origin = mat_origin[genes, , drop = FALSE]
#Parse annotations
if(!is.null(clinicalFeatures)){
if(is.null(annotationDat)){
annotation = parse_annotation_dat(annotationDat = maf, clinicalFeatures = clinicalFeatures)
}else{
annotation = parse_annotation_dat(annotationDat = annotationDat, clinicalFeatures = clinicalFeatures)
}
if(sortByAnnotation){
numMat = sortByAnnotation(numMat = numMat, maf = maf, anno = annotation, annoOrder = annotationOrder)
}
}
if(is.null(colors)){
vc_col = get_vcColors(websafe = FALSE)
}else{
vc_col = colors
}
#VC codes
vc_codes = update_vc_codes(om_op = om)
vc_col = update_colors(x = vc_codes, y = vc_col)
#vc_codes = om$vc #VC codes
percent_alt = paste0(round((apply(numMat, 1, function(x) length(x[x != 0])) / length(tsbs)) * 100), "%")
if(plot2){
if(is.null(clinicalFeatures)){
if(showBarcodes){
par(mar = c(barcodemar, 1, 3, genemar))
}else{
par(mar = c(barcodemar, 1, 3, genemar))
}
}else{
if(showBarcodes){
par(mar = c(barcodemar, 1, 3, genemar))
}else{
par(mar = c(barcodemar, 1, 3, genemar))
}
}
}else{
if(is.null(clinicalFeatures)){
if(showBarcodes){
par(mar = c(barcodemar, genemar, 3, 1))
}else{
par(mar = c(barcodemar, genemar, 3, 1))
}
}else{
if(showBarcodes){
par(mar = c(barcodemar, genemar, 3, 1))
}else{
par(mar = c(barcodemar, genemar, 3, 1))
}
}
}
if(test){
return(list(numMat, vc_col[om$vc]))
}
if(!is.null(sampleOrder)){
sampleOrder = as.character(sampleOrder)
sampleOrder = sampleOrder[sampleOrder %in% colnames(numMat)]
if(length(sampleOrder) == 0){
stop("None of the provided samples are present in the input MAF")
}
numMat = numMat[,sampleOrder, drop = FALSE]
}
nm = t(apply(numMat, 2, rev))
nm[nm == 0] = NA
image(x = 1:nrow(nm), y = 1:ncol(nm), z = nm, axes = FALSE, xaxt="n", yaxt="n",
xlab="", ylab="", col = "white") #col = "#FC8D62"
#Plot for all variant classifications
vc_codes_temp = vc_codes[!vc_codes %in% c('Amp', 'Del')]
for(i in 2:length(names(vc_codes_temp))){
vc_code = vc_codes_temp[i]
col = vc_col[vc_code]
nm = t(apply(numMat, 2, rev))
nm[nm != names(vc_code)] = NA
suppressWarnings(image(x = 1:nrow(nm), y = 1:ncol(nm), z = nm, axes = FALSE, xaxt="n", yaxt="n",
xlab="", ylab="", col = col, add = TRUE))
}
#Add blanks
nm = t(apply(numMat, 2, rev))
nm[nm != 0] = NA
image(x = 1:nrow(nm), y = 1:ncol(nm), z = nm, axes = FALSE, xaxt="n", yaxt="n", xlab="", ylab="", col = bgCol, add = TRUE)
#Add CNVs if any
mat_origin = mat_origin[rownames(numMat), colnames(numMat), drop = FALSE]
mo = t(apply(mat_origin, 2, rev))
##Complex events (mutated as well as CN altered)
complex_events = unique(grep(pattern = ";", x = mo, value = TRUE))
if(length(complex_events) > 0){
for(i in 1:length(complex_events)){
ce = complex_events[i]
#mo = t(apply(mat_origin, 2, rev))
ce_idx = which(mo == ce, arr.ind = TRUE)
ce = unlist(strsplit(x = ce, split = ";", fixed = TRUE))
nm_temp = matrix(NA, nrow = nrow(nm), ncol = ncol(nm))
nm_temp[ce_idx] = 0
image(x = 1:nrow(nm_temp), y = 1:ncol(nm_temp), z = nm_temp, axes = FALSE, xaxt="n",
yaxt="n", xlab="", ylab="", col = vc_col[ce[2]], add = TRUE)
#points(ce_idx, pch= 15, col= vc_col[ce[1]])
ce_idx = which(t(nm_temp) == 0, arr.ind = TRUE)
for(i in seq_len(nrow(ce_idx))){
rowi = ce_idx[i,1]
coli = ce_idx[i,2]
rect(xleft = coli-0.5, ybottom = rowi-0.25, xright = coli+0.5, ytop = rowi+0.25, col = vc_col[ce[1]], border = NA, lwd = 0)
}
}
}
for(cnevent in om$cnvc){
cn_idx = which(mo == cnevent, arr.ind = TRUE)
if(nrow(cn_idx) > 0){
nm_temp = matrix(NA, nrow = nrow(nm), ncol = ncol(nm))
nm_temp[cn_idx] = 0
image(x = 1:nrow(nm_temp), y = 1:ncol(nm_temp), z = nm_temp, axes = FALSE, xaxt="n",
yaxt="n", xlab="", ylab="", col = bgCol, add = TRUE)
cn_idx = which(t(nm_temp) == 0, arr.ind = TRUE)
for(i in seq_len(nrow(cn_idx))){
rowi = cn_idx[i,1]
coli = cn_idx[i,2]
rect(xleft = coli-0.5, ybottom = rowi-0.25, xright = coli+0.5, ytop = rowi+0.25, col = vc_col[cnevent], border = NA, lwd = 0)
}
}
}
#Draw if any additional features are requested
additionalFeature_legend = FALSE
if(!is.null(additionalFeature)){
if(!is(object = additionalFeature, class2 = "list")){
if(length(additionalFeature) < 2){
stop("additionalFeature must be of length two. See ?oncoplot for details.")
}else{
additionalFeature = list(additionalFeature)
}
}
if(length(additionalFeaturePch) != length(additionalFeature)){
warning("Provided pch for additional features are recycled")
additionalFeaturePch = rep(additionalFeaturePch, length(additionalFeature))
}
if(length(additionalFeatureCol) != length(additionalFeature)){
warning("Provided colors for additional features are recycled")
additionalFeatureCol = rep(additionalFeatureCol, length(additionalFeature))
}
lapply(1:length(additionalFeature), function(af_idx){
af = additionalFeature[[af_idx]]
af_dat = subsetMaf(maf = maf, genes = rownames(numMat), tsb = colnames(numMat), fields = af[1], includeSyn = FALSE, mafObj = FALSE)
if(length(which(colnames(af_dat) == af[1])) == 0){
message(paste0("Column ", af[1], " not found in maf. Here are available fields.."))
print(getFields(maf))
stop()
}
colnames(af_dat)[which(colnames(af_dat) == af[1])] = 'temp_af'
af_dat = af_dat[temp_af %in% af[2]]
if(nrow(af_dat) == 0){
warning(paste0("No samples are enriched for ", af[2], " in ", af[1]))
}else{
af_mat = data.table::dcast(data = af_dat, Tumor_Sample_Barcode ~ Hugo_Symbol, value.var = "temp_af", fun.aggregate = length)
af_mat = as.matrix(af_mat, rownames = "Tumor_Sample_Barcode")
nm = t(apply(numMat, 2, rev))
lapply(seq_len(nrow(af_mat)), function(i){
af_i = af_mat[i,, drop = FALSE]
af_i_genes = colnames(af_i)[which(af_i > 0)]
af_i_sample = rownames(af_i)
lapply(af_i_genes, function(ig){
af_i_mat = matrix(c(which(rownames(nm) == af_i_sample),
which(colnames(nm) == ig)),
nrow = 1)
points(af_i_mat, pch = additionalFeaturePch[af_idx], col= additionalFeatureCol[af_idx], cex = additionalFeatureCex)
})
})
additionalFeature_legend = TRUE
}
})
}
#Add grids
abline(h = (1:ncol(nm)) + 0.5, col = borderCol, lwd = sepwd_genes, xpd = FALSE)
abline(v = (1:nrow(nm)) + 0.5, col = borderCol, lwd = sepwd_samples, xpd = FALSE)
title(title, cex.main = title_size, outer = FALSE, font = 2)
# mtext(text = colnames(nm), side = 2, at = 1:ncol(nm),
# font = 3, line = 0.4, cex = fontSize, las = 2)
if(plot2){
mtext(text = rev(percent_alt), side = 4, at = 1:ncol(nm),
font = 1, line = 0.4, cex = fontSize, las = 2, adj = 0)
if(showBarcodes){
mtext(text = rownames(nm), side = 1, las =2, at = 1:nrow(nm),
line = 0.4, cex = barcode_size, font = 1)
# graphics::text(x =1:nrow(nm), y = 0.40,
# labels = rownames(nm), srt = 90, font = 1,
# cex = barcode_size, adj = 1)
}
}else{
mtext(text = rev(percent_alt), side = 2, at = 1:ncol(nm),
font = 1, line = 0.4, cex = fontSize, las = 2, adj = 1)
if(showBarcodes){
mtext(text = rownames(nm), side = 1, las =2, at = 1:nrow(nm),
line = 0.4, cex = barcode_size, font = 1)
# graphics::text(x =1:nrow(nm), y = 0.40,
# labels = rownames(nm), srt = 90, font = 1,
# cex = barcode_size, adj = 1)
}
}
#Color codes for annoations
#annotationColor = NULL
if(!is.null(clinicalFeatures)){
clini_lvls = as.character(unlist(lapply(annotation, function(x) unique(as.character(x)))))
if(is.null(annotationColor)){
annotationColor = get_anno_cols(ann = annotation)
}
annotationColor = annotationColor[colnames(annotation)]
annotationColor = lapply(annotationColor, function(x) {
na_idx = which(is.na(names(x)))
x[na_idx] = "gray70"
names(x)[na_idx] = "NA"
x
})
anno_cols = c()
for(i in 1:length(annotationColor)){
anno_cols = c(anno_cols, annotationColor[[i]])
}
#clini_lvls = clini_lvls[!is.na(clini_lvls)]
temp_names = suppressWarnings(sample(x = setdiff(x = 1:1000, y = as.numeric(as.character(clini_lvls))), size = length(clini_lvls), replace = FALSE))
names(clini_lvls) = temp_names#1:length(clini_lvls)
temp_rownames = rownames(annotation)
annotation = data.frame(lapply(annotation, as.character),
stringsAsFactors = FALSE, row.names = temp_rownames)
for(i in 1:length(clini_lvls)){
annotation[annotation == clini_lvls[i]] = names(clini_lvls[i])
}
annotation = data.frame(lapply(annotation, as.numeric), stringsAsFactors=FALSE, row.names = temp_rownames)
annotation = annotation[colnames(numMat), ncol(annotation):1, drop = FALSE]
if(plot2){
par(mar = c(0, 1, 0, genemar))
}else{
par(mar = c(0, genemar, 0, 1))
}
image(x = 1:nrow(annotation), y = 1:ncol(annotation), z = as.matrix(annotation),
axes = FALSE, xaxt="n", yaxt="n", bty = "n",
xlab="", ylab="", col = "white") #col = "#FC8D62"
#Plot for all variant classifications
for(i in 1:length(names(clini_lvls))){
anno_code = clini_lvls[i]
col = anno_cols[anno_code]
#temp_anno = t(apply(annotation, 2, rev))
temp_anno = as.matrix(annotation)
temp_anno[temp_anno != names(anno_code)] = NA
suppressWarnings(image(x = 1:nrow(temp_anno), y = 1:ncol(temp_anno), z = temp_anno,
axes = FALSE, xaxt="n", yaxt="n", xlab="", ylab="", col = col, add = TRUE))
}
#Add grids
abline(h = (1:ncol(nm)) + 0.5, col = "white", lwd = sepwd_genes, xpd = FALSE)
abline(v = (1:nrow(nm)) + 0.5, col = "white", lwd = sepwd_samples, xpd = FALSE)
if(plot2){
mtext(text = colnames(annotation), side = 4,
font = 1, line = 0.4, cex = fontSize, las = 2, at = 1:ncol(annotation))
}else{
mtext(text = colnames(annotation), side = 2,
font = 1, line = 0.4, cex = fontSize, las = 2, at = 1:ncol(annotation))
}
}
return(list(sampOrder = rownames(nm), annotationColor))
}
get_m12_annotation_colors = function(a1 = NULL, a1_cf = NULL,
a2 = NULL , a2_cf = NULL){
a1 = parse_annotation_dat(a1, a1_cf)
a2 = parse_annotation_dat(a2, a2_cf)
com_anno = intersect(colnames(a1), colnames(a2))
cf_cols = list()
if(length(com_anno) > 0){
for(i in 1:length(com_anno)){
cf_temp = com_anno[i]
com_clini_lvls = unique(c(as.character(unlist(lapply(a1[,cf_temp, drop = FALSE], function(x) unique(as.character(x))))),
as.character(unlist(lapply(a2[,cf_temp, drop = FALSE], function(x) unique(as.character(x)))))))
if(length(com_clini_lvls) <= 9){
ann_lvls_cols = RColorBrewer::brewer.pal(n = 9, name = 'Set1')[1:length(com_clini_lvls)]
}else{
ann_lvls_cols = colors()[sample(x = 1:100, size = length(com_clini_lvls), replace = FALSE)]
}
cf_cols[[i]] = ann_lvls_cols
names(cf_cols[[i]]) = com_clini_lvls
#print(cf_cols)
}
}
names(cf_cols) = com_anno
a1_rest = a1[,colnames(a1)[!colnames(a1) %in% com_anno], drop = FALSE]
a2_rest = a2[,colnames(a2)[!colnames(a2) %in% com_anno], drop = FALSE]
a1_rest_cols = list()
if(ncol(a1_rest) > 0){
for(i in 1:ncol(a1_rest)){
ann_lvls = unique(as.character(a1_rest[,i]))
if(length(ann_lvls) <= 9){
ann_lvls_cols = RColorBrewer::brewer.pal(n = 9, name = 'Set1')[1:length(ann_lvls)]
}else{
ann_lvls_cols = colors()[sample(x = 1:100, size = length(ann_lvls), replace = FALSE)]
}
a1_rest_cols[[i]] = ann_lvls_cols
names(a1_rest_cols[[i]]) = ann_lvls
}
}
names(a1_rest_cols) = colnames(a1_rest)
a2_rest_cols = list()
if(ncol(a2_rest) > 0){
for(i in 1:ncol(a2_rest)){
ann_lvls = unique(as.character(a2_rest[,i]))
if(length(ann_lvls) <= 9){
ann_lvls_cols = RColorBrewer::brewer.pal(n = 9, name = 'Set1')[1:length(ann_lvls)]
}else{
ann_lvls_cols = colors()[sample(x = 1:100, size = length(ann_lvls), replace = FALSE)]
}
a2_rest_cols[[i]] = ann_lvls_cols
names(a2_rest_cols[[i]]) = ann_lvls
}
}
names(a2_rest_cols) = colnames(a2_rest)
return(c(cf_cols, a1_rest_cols, a2_rest_cols))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.