#' Add grouping of UMI-4C samples
#'
#' This function can be used to add specific groupings to \code{UMI4C} objects.
#' @param umi4c \linkS4class{UMI4C} object as generated by \code{\link{makeUMI4C}}.
#' @inheritParams makeUMI4C
#' @return Adds a new \code{UMI4C} object into the \code{groupsUMI4C} slot with
#' samples grouped according to \code{grouping} variable.
#' @examples
#' data("ex_ciita_umi4c")
#'
#' ex_ciita_umi4c <- addGrouping(ex_ciita_umi4c, grouping="condition")
#' @export
addGrouping <- function(umi4c,
grouping = "sampleID",
scales = 5:150,
normalized = TRUE,
sd = 2) {
if(is.null(grouping)) stop("You need to provide a valid variable for grouping.")
if(length(grouping)>1) stop("Use only one varible for grouping. You can latter add more groupings using the addGrouping() function.")
else if(grouping %in% metadata(umi4c)$grouping) stop("This grouping is already included in your UMI4C object")
metadata(umi4c)$grouping <- c(metadata(umi4c)$grouping, grouping)
# Group matrix
if (grouping!="sampleID") {
umi_group <- groupSamplesUMI4C(umi4c,
grouping=grouping)
} else {
umi_group <- umi4c
}
## Get reference samples
ref <- metadata(umi_group)$ref_umi4c
if (is.null(ref) | !(grouping %in% names(ref))) {
# Get sample with less UMIs if no ref present
metadata(umi_group)$ref_umi4c <- colnames(assay(umi_group))[which(colSums(assay(umi_group)) == min(colSums(assay(umi_group))))][1]
} else {
# Use value from named list
metadata(umi_group)$ref_umi4c <- ref[grouping]
}
# Get normalization matrix
umi_group <- getNormalizationMatrix(umi_group)
## Calculate domainograms
umi_group <- calculateDomainogram(umi_group,
scales = scales,
normalized = normalized
)
## Calculate adaptative trend
umi_group <- calculateAdaptativeTrend(umi_group,
sd = sd,
normalized = normalized
)
grouping_list <- groupsUMI4C(umi4c)
grouping_list[[grouping]] <- umi_group
groupsUMI4C(umi4c) <- grouping_list
return(umi4c)
}
#' Group UMI4C samples
#'
#' Combines UMI4C samples by adding UMIs from \code{assay(umi4c)} to represent
#' the levels in \code{grouping}.
#' @inheritParams addGrouping
#' @return A grouped \code{UMI4C} object.
groupSamplesUMI4C <- function(umi4c, grouping="condition") {
assay <- assay(umi4c)
## Sum UMI4C from replicates
assay_m <- reshape2::melt(assay)
colnames(assay_m) <- c("rowname", "sampleID", "UMIs")
assay_m <- suppressWarnings(dplyr::left_join(
assay_m,
data.frame(colData(umi4c))[, unique(c("sampleID", grouping)), drop = FALSE],
by = "sampleID"
))
assay_df <- assay_m %>%
dplyr::group_by_at(c("rowname", grouping)) %>%
dplyr::summarise(UMIs = sum(UMIs, na.rm = TRUE)) %>%
reshape2::dcast(stats::as.formula(paste0("rowname~", grouping)), value.var = "UMIs")
assay <- as.matrix(assay_df[, -which(colnames(assay_df) == "rowname")], )
rownames(assay) <- assay_df$rowname
colnames(assay) <- colnames(assay_df)[-1]
## Summarize colData
colData <- data.frame(colData(umi4c)) %>%
dplyr::group_by_at(grouping) %>%
dplyr::summarise_all(paste0, collapse = ", ")
umi4c_grouped <- UMI4C(colData = colData,
rowRanges = rowRanges(umi4c),
metadata = metadata(umi4c),
assays = SimpleList(umi = assay))
return(umi4c_grouped)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.