R/s4_analysis_functs_2.R

Defines functions skip_assign_grnas_and_run_qc write_outputs_to_directory get_result apply_grouping_to_result run_sceptre_analysis_high_level process_discovery_result run_discovery_analysis run_power_check process_calibration_result run_calibration_check_pt_2 run_calibration_check_pt_1 run_calibration_check

Documented in get_result run_calibration_check run_discovery_analysis run_power_check write_outputs_to_directory

#' Run calibration check
#'
#' `run_calibration_check()` runs the calibration check. The calibration check involves applying sceptre to analyze negative control target-response pairs --- pairs for which we know there is no association between the target and response --- to ensure control of the false discovery rate. The calibration check enables us to verify that the discovery set that sceptre ultimately produces is not contaminated by excess false positives. See \href{https://timothy-barry.github.io/sceptre-book/run-calibration-check.html}{Chapter 5 of the manual} for more detailed information about this function.
#'
#' @param sceptre_object a `sceptre_object`
#' @param output_amount (optional; default `1`) an integer taking values 1, 2, or 3 specifying the amount of information to return. `1` returns the least amount of information and `3` the most.
#' @param n_calibration_pairs (optional) the number of negative control pairs to construct and test for association
#' @param calibration_group_size (optional) the number of negative control gRNAs to randomly assemble to form each negative control target
#' @param print_progress (optional; default `TRUE`) a logical indicating whether to print progress updates
#' @param parallel (optional; default `FALSE`) a logical indicating whether to run the function in parallel
#' @param n_processors (optional; default `"auto"`) an integer specifying the number of processors to use if `parallel` is set to `TRUE`. The default, `"auto"`, automatically detects the number of processors available on the machine.
#' @param log_dir (optional; default `tempdir()`) a string indicating the directory in which to write the log files (ignored if `parallel = FALSE`)
#' @return an updated `sceptre_object` in which the calibration check has been carried out
#'
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#'
#' # set analysis parameters, assign grnas, run qc, run calibration check
#' sceptre_object <- sceptre_object |>
#'   set_analysis_parameters(
#'     side = "left",
#'     resampling_mechanism = "permutations"
#'   ) |>
#'   assign_grnas(method = "thresholding") |>
#'   run_qc() |>
#'   run_calibration_check(
#'     n_calibration_pairs = 500,
#'     calibration_group_size = 2,
#'     parallel = TRUE,
#'     n_processors = 2
#'   )
run_calibration_check <- function(sceptre_object, n_calibration_pairs = NULL,
                                  calibration_group_size = NULL, print_progress = TRUE, parallel = FALSE,
                                  n_processors = "auto", log_dir = tempdir(), output_amount = 1) {
  sceptre_object <- sceptre_object |>
    run_calibration_check_pt_1(
      n_calibration_pairs = n_calibration_pairs,
      calibration_group_size = calibration_group_size,
      parallel = parallel,
      n_processors = n_processors
    ) |>
    run_calibration_check_pt_2(
      output_amount = output_amount,
      print_progress = print_progress,
      parallel = parallel,
      n_processors = n_processors,
      log_dir = log_dir
    )
  return(sceptre_object)
}


run_calibration_check_pt_1 <- function(sceptre_object, n_calibration_pairs = NULL, calibration_group_size = NULL,
                                       parallel = FALSE, n_processors = "auto") {
  # 0. advance function (if necessary), and check function call
  sceptre_object <- skip_assign_grnas_and_run_qc(sceptre_object, parallel, n_processors)
  sceptre_object <- perform_status_check_and_update(sceptre_object, "run_calibration_check")
  if (!parallel) cat(crayon::red("Note: If you are on a Mac laptop or desktop, consider setting `parallel = TRUE` to improve speed. Otherwise, keep `parallel = FALSE`.\n\n"))

  # 1. handle the default arguments
  if (sceptre_object@n_discovery_pairs == 0L && (is.null(n_calibration_pairs) || is.null(calibration_group_size))) {
    stop("`calibration_group_size` and `n_calibration_pairs` must be supplied when discovery pairs are not specified.")
  }
  if (is.null(calibration_group_size)) calibration_group_size <- compute_calibration_group_size(sceptre_object@grna_target_data_frame)
  if (is.null(n_calibration_pairs)) {
    n_calibration_pairs <- sceptre_object@n_ok_discovery_pairs
  }
  if (!is.null(n_calibration_pairs) && sceptre_object@resampling_approximation == "no_approximation") {
    mult_fact <- if (sceptre_object@side_code == 0L) 10 else 5
    sceptre_object@B3 <- ceiling(mult_fact * n_calibration_pairs / sceptre_object@multiple_testing_alpha) |> as.integer()
  }

  # 2. check inputs
  check_calibration_check_inputs(sceptre_object, n_calibration_pairs, n_processors) |> invisible()

  # 3. construct the negative control pairs
  negative_control_pairs <- construct_negative_control_pairs_v2(
    sceptre_object = sceptre_object,
    n_calibration_pairs = n_calibration_pairs,
    calibration_group_size = calibration_group_size
  )

  # 4. update uncached objects
  sceptre_object@calibration_group_size <- as.integer(calibration_group_size)
  sceptre_object@n_calibration_pairs <- as.integer(n_calibration_pairs)
  sceptre_object@negative_control_pairs <- negative_control_pairs
  return(sceptre_object)
}


run_calibration_check_pt_2 <- function(sceptre_object, output_amount = 1, print_progress = TRUE,
                                       parallel = FALSE, n_processors = "auto", log_dir = tempdir()) {
  # 5. run the sceptre analysis (high-level function call)
  response_grna_group_pairs <- sceptre_object@negative_control_pairs
  out <- run_sceptre_analysis_high_level(
    sceptre_object = sceptre_object,
    response_grna_group_pairs = response_grna_group_pairs,
    calibration_check = TRUE,
    analysis_type = "calibration_check",
    output_amount = output_amount,
    print_progress = print_progress,
    parallel = parallel,
    n_processors = n_processors,
    log_dir = log_dir
  )

  # 6. update fields of sceptre object with results
  sceptre_object@calibration_result <- if (!sceptre_object@nf_pipeline) {
    process_calibration_result(out$result, sceptre_object)
  } else {
    out$result
  }
  sceptre_object@response_precomputations <- out$response_precomputations
  return(sceptre_object)
}


process_calibration_result <- function(result, sceptre_object) {
  result |>
    apply_grouping_to_result(sceptre_object, TRUE) |>
    dplyr::mutate(significant = stats::p.adjust(p_value, method = sceptre_object@multiple_testing_method) <
      sceptre_object@multiple_testing_alpha)
}


#' Run power check
#'
#' `run_power_check()` runs the power check. The power check entails applying `sceptre` to analyze positive control pairs --- pairs for which we know there is an association between the target and the response --- to ensure that `sceptre` is capable of detecting true associations. See \href{https://timothy-barry.github.io/sceptre-book/run-power-check-and-discovery-analysis.html}{Chapter 6 of the manual} for more detailed information about this function.
#'
#' @param sceptre_object a `sceptre_object`
#' @inheritParams run_calibration_check
#' @return an updated `sceptre_object` in which the power check has been carried out
#'
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#'
#' # set analysis parameters, assign grnas, run qc
#' positive_control_pairs <- construct_positive_control_pairs(sceptre_object)
#' sceptre_object <- sceptre_object |>
#'   set_analysis_parameters(
#'     side = "left",
#'     resampling_mechanism = "permutations",
#'     positive_control_pairs = positive_control_pairs
#'   ) |>
#'   assign_grnas(method = "thresholding") |>
#'   run_qc() |>
#'   run_power_check()
run_power_check <- function(sceptre_object, output_amount = 1, print_progress = TRUE, parallel = FALSE,
                            n_processors = "auto", log_dir = tempdir()) {
  # 0. verify that function called in correct order
  sceptre_object <- skip_assign_grnas_and_run_qc(sceptre_object, parallel, n_processors)
  sceptre_object <- perform_status_check_and_update(sceptre_object, "run_power_check")
  if (!parallel) cat(crayon::red("Note: If you are on a Mac laptop or desktop, consider setting `parallel = TRUE` to improve speed. Otherwise, keep `parallel = FALSE`.\n\n"))

  # 1. extract relevant arguments
  response_grna_group_pairs <- sceptre_object@positive_control_pairs_with_info

  # 2. check inputs
  check_discovery_analysis_inputs(
    response_grna_group_pairs = response_grna_group_pairs,
    control_group_complement = sceptre_object@control_group_complement,
    grna_target_data_frame = sceptre_object@grna_target_data_frame,
    pc_analysis = TRUE,
    calibration_result = sceptre_object@calibration_result,
    n_ok_pairs = sceptre_object@n_ok_positive_control_pairs,
    n_processors = n_processors
  ) |> invisible()

  # 3.  run the sceptre analysis (high-level function call)
  out <- run_sceptre_analysis_high_level(
    sceptre_object = sceptre_object,
    response_grna_group_pairs = response_grna_group_pairs,
    calibration_check = FALSE,
    analysis_type = "power_check",
    output_amount = output_amount,
    print_progress = print_progress,
    parallel = parallel,
    n_processors = n_processors,
    log_dir = log_dir
  )

  # 4. update fields of sceptre object with results
  sceptre_object@power_result <- if (!sceptre_object@nf_pipeline) {
    out$result |> apply_grouping_to_result(sceptre_object)
  } else {
    out$result
  }
  sceptre_object@response_precomputations <- out$response_precomputations
  return(sceptre_object)
}


#' Run discovery analysis
#'
#' `run_discovery_analysis()` runs the discovery analysis. The discovery analysis involves applying `sceptre` to analyze discovery pairs, or target-response pairs whose association status we do not know but seek to learn. Identifying associations among the discovery pairs is the primary objective of the single-cell CRISPR screen analysis. See \href{https://timothy-barry.github.io/sceptre-book/run-power-check-and-discovery-analysis.html}{Chapter 6 of the manual} for more detailed information about this function.
#'
#' @param sceptre_object a `sceptre_object`
#' @inheritParams run_calibration_check
#' @return an updated `sceptre_object` in which the discovery analysis has been carried out
#'
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#' # set analysis parameters, assign grnas, run qc
#' discovery_pairs <- construct_cis_pairs(sceptre_object)
#' sceptre_object <- sceptre_object |>
#'   set_analysis_parameters(
#'     side = "left",
#'     resampling_mechanism = "permutations",
#'     discovery_pairs = discovery_pairs
#'   ) |>
#'   assign_grnas(method = "thresholding") |>
#'   run_qc() |>
#'   run_discovery_analysis(
#'     parallel = TRUE,
#'     n_processors = 2
#'   )
run_discovery_analysis <- function(sceptre_object, output_amount = 1, print_progress = TRUE, parallel = FALSE,
                                   n_processors = "auto", log_dir = tempdir()) {
  # 0. verify that function called in correct order
  sceptre_object <- skip_assign_grnas_and_run_qc(sceptre_object, parallel, n_processors)
  sceptre_object <- perform_status_check_and_update(sceptre_object, "run_discovery_analysis")
  if (!parallel) cat(crayon::red("Note: If you are on a Mac laptop or desktop, consider setting `parallel = TRUE` to improve speed. Otherwise, keep `parallel = FALSE`.\n\n"))

  # 1. extract relevant arguments
  response_grna_group_pairs <- sceptre_object@discovery_pairs_with_info

  # 2. check inputs
  check_discovery_analysis_inputs(
    response_grna_group_pairs = response_grna_group_pairs,
    control_group_complement = sceptre_object@control_group_complement,
    grna_target_data_frame = sceptre_object@grna_target_data_frame,
    pc_analysis = FALSE,
    calibration_result = sceptre_object@calibration_result,
    n_ok_pairs = sceptre_object@n_ok_discovery_pairs,
    n_processors = n_processors
  ) |> invisible()

  # 3.  run the sceptre analysis (high-level function call)
  out <- run_sceptre_analysis_high_level(
    sceptre_object = sceptre_object,
    response_grna_group_pairs = response_grna_group_pairs,
    calibration_check = FALSE,
    analysis_type = "discovery_analysis",
    output_amount = output_amount,
    print_progress = print_progress,
    parallel = parallel,
    n_processors = n_processors,
    log_dir = log_dir
  )

  # 4. update fields of sceptre object with results
  sceptre_object@discovery_result <- if (!sceptre_object@nf_pipeline) {
    process_discovery_result(out$result, sceptre_object)
  } else {
    out$result
  }
  sceptre_object@response_precomputations <- out$response_precomputations
  return(sceptre_object)
}


process_discovery_result <- function(result, sceptre_object) {
  result |>
    apply_grouping_to_result(sceptre_object) |>
    dplyr::mutate(significant = stats::p.adjust(p_value, method = sceptre_object@multiple_testing_method) <
      sceptre_object@multiple_testing_alpha)
}


run_sceptre_analysis_high_level <- function(sceptre_object, response_grna_group_pairs, calibration_check, analysis_type,
                                            output_amount, print_progress, parallel, n_processors, log_dir) {
  # if running permutations, generate the permutation idxs
  if (sceptre_object@run_permutations) {
    cat("Generating permutation resamples.")
    synthetic_idxs <- get_synthetic_permutation_idxs(
      grna_assignments = sceptre_object@grna_assignments,
      B = sceptre_object@B1 + sceptre_object@B2 + sceptre_object@B3,
      calibration_check = calibration_check,
      control_group_complement = sceptre_object@control_group_complement,
      calibration_group_size = sceptre_object@calibration_group_size,
      n_cells = length(sceptre_object@cells_in_use)
    )
    cat(crayon::green(" \u2713\n"))
  }
  gc() |> invisible()

  # initialize the args to pass
  args_to_pass <- list(
    response_matrix = get_response_matrix(sceptre_object),
    grna_assignments = sceptre_object@grna_assignments,
    covariate_matrix = sceptre_object@covariate_matrix,
    response_grna_group_pairs = response_grna_group_pairs |> dplyr::filter(pass_qc),
    output_amount = output_amount,
    resampling_approximation = sceptre_object@resampling_approximation,
    B1 = sceptre_object@B1, B2 = sceptre_object@B2,
    B3 = sceptre_object@B3, calibration_check = calibration_check,
    control_group_complement = sceptre_object@control_group_complement,
    n_nonzero_trt_thresh = sceptre_object@n_nonzero_trt_thresh,
    n_nonzero_cntrl_thresh = sceptre_object@n_nonzero_cntrl_thresh,
    side_code = sceptre_object@side_code, low_moi = sceptre_object@low_moi,
    response_precomputations = sceptre_object@response_precomputations,
    cells_in_use = sceptre_object@cells_in_use, print_progress = print_progress,
    parallel = parallel, n_processors = n_processors, log_dir = log_dir,
    analysis_type = analysis_type
  )

  # run the method
  out <- if (sceptre_object@run_permutations) {
    args_to_pass$synthetic_idxs <- synthetic_idxs
    do.call(what = "run_perm_test_in_memory", args = args_to_pass)
  } else {
    do.call(what = "run_crt_in_memory_v2", args = args_to_pass)
  }

  # wrangle the result and return
  final_result <- data.table::rbindlist(list(out$result, response_grna_group_pairs |> dplyr::filter(!pass_qc)), fill = TRUE)
  data.table::setorderv(final_result, cols = c("p_value", "response_id"), na.last = TRUE)
  out$result <- final_result
  return(out)
}


apply_grouping_to_result <- function(result, sceptre_object, is_calibration_check = FALSE) {
  grna_integration_strategy <- sceptre_object@grna_integration_strategy
  if (grna_integration_strategy == "union") {
    new_result <- result |> dplyr::rename("grna_target" = "grna_group")
  }
  if (grna_integration_strategy %in% c("singleton", "bonferroni")) {
    grna_target_data_frame <- sceptre_object@grna_target_data_frame |>
      dplyr::select(grna_id, grna_target)
    new_result <- result |>
      dplyr::rename("grna_id" = "grna_group") |>
      dplyr::left_join(grna_target_data_frame, by = "grna_id") |>
      dplyr::relocate(response_id, grna_id, grna_target)
    if (grna_integration_strategy == "bonferroni" && !is_calibration_check) {
      new_result <- new_result |>
        dplyr::group_by(response_id, grna_target) |>
        dplyr::group_modify(.f = function(tbl, key) {
          if (!any(tbl$pass_qc)) {
            n_nonzero_trt_out <- max(tbl$n_nonzero_trt)
            n_nonzero_cntrl_out <- max(tbl$n_nonzero_cntrl)
            log_2_fold_change_out <- p_value_out <- NA
            pass_qc_out <- FALSE
          } else {
            min_p_idx <- which.min(tbl$p_value)
            n_nonzero_trt_out <- tbl$n_nonzero_trt[min_p_idx]
            n_nonzero_cntrl_out <- tbl$n_nonzero_cntrl[min_p_idx]
            log_2_fold_change_out <- tbl$log_2_fold_change[min_p_idx]
            p_value_out <- min(sum(tbl$pass_qc) * tbl$p_value[min_p_idx], 1)
            pass_qc_out <- TRUE
          }
          data.frame(
            p_value = p_value_out,
            n_nonzero_trt = n_nonzero_trt_out,
            n_nonzero_cntrl = n_nonzero_cntrl_out,
            log_2_fold_change = log_2_fold_change_out,
            pass_qc = pass_qc_out
          )
        }) |>
        dplyr::ungroup()
    }
    data.table::setorderv(new_result, c("p_value", "response_id"), na.last = TRUE)
  }
  return(new_result)
}


#' Get result
#'
#' `get_result()` returns a data frame containing the result of a calibration check, power check, or discovery analysis. We pass as arguments `sceptre_object` and `analysis`, where the latter is a string indicating the function whose results we are querying. The output is a data frame, the rows of which correspond to target-response pairs, and the columns of which are as follows: `response_id`, `grna_target`, `n_nonzero_trt`, `n_nonzero_cntrl`, `pass_qc` (a `TRUE`/`FALSE` value indicating whether the pair passes pairwise QC), `p_value`, `log_2_fold_change`, and `significant` (a `TRUE`/`FALSE` value indicating whether the pair is called as significant). The p-value contained within the `p_value` column is a raw (i.e., non-multiplicity-adjusted) p-value. See \href{https://timothy-barry.github.io/sceptre-book/sceptre.html#sec-sceptre_write_outputs_to_directory}{Section 8 of the introductory chapter in the manual} for more information about this function.
#'
#'
#' @note If `output_amount` is set to `2` or `3` in `run_calibration_check()`, `run_power_check()`, or `run_discovery_analysis()`, then the result data frame contains additional columns; see \href{https://timothy-barry.github.io/sceptre-book/run-calibration-check.html#sec-run_calibration_check_output_amount}{Chapter 6 in the manual} for more information.
#' @param sceptre_object a `sceptre_object`
#' @param analysis a string indicating the name of the analysis whose results we are querying, one of `"run_calibration_check"`, `"run_power_check"`, or `"run_discovery_analysis"`.
#'
#' @returns a data frame containing the results of the analysis
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#' positive_control_pairs <- construct_positive_control_pairs(sceptre_object)
#' pc_result <- sceptre_object |>
#'   set_analysis_parameters(
#'     side = "left",
#'     resampling_mechanism = "permutations",
#'     positive_control_pairs = positive_control_pairs
#'   ) |>
#'   assign_grnas(method = "thresholding") |>
#'   run_qc() |>
#'   run_power_check() |>
#'   get_result("run_power_check")
get_result <- function(sceptre_object, analysis) {
  if (!(analysis %in% c("run_calibration_check", "run_power_check", "run_discovery_analysis"))) {
    stop("`analysis` must be one of `run_calibration_check`, `run_power_check`, or `run_discovery_analysis`.")
  }
  if (!sceptre_object@functs_called[[analysis]]) stop(analysis, " has not yet been run.")
  field_to_extract <- switch(EXPR = analysis,
    run_calibration_check = "calibration_result",
    run_power_check = "power_result",
    run_discovery_analysis = "discovery_result"
  )
  out <- methods::slot(sceptre_object, field_to_extract)
  return(out)
}


#' Write outputs to directory
#'
#' `write_outputs_to_directory()` writes the outputs of a `sceptre` analysis to a directory on disk. `write_outputs_to_directory()` writes several files to the specified directory: a text-based summary of the analysis (`analysis_summary.txt`), the various plots (`*.png`), the calibration check, power check, discovery analysis results (`results_run_calibration_check.rds`, `results_run_power_check.rds`, and `results_run_discovery_analysis.rds`, respectively), and the binary gRNA-to-cell assignment matrix (`grna_assignment_matrix.rds`). See \href{https://timothy-barry.github.io/sceptre-book/sceptre.html#sec-sceptre_write_outputs_to_directory}{Section 8 of the introductory chapter in the manual} for more information about this function.
#'
#' @param sceptre_object a `sceptre_object`
#' @param directory a string giving the file path to a directory on disk in which to write the results
#'
#' @return the value NULL
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#' positive_control_pairs <- construct_positive_control_pairs(sceptre_object)
#' discovery_pairs <- construct_cis_pairs(sceptre_object,
#'   positive_control_pairs = positive_control_pairs,
#'   distance_threshold = 5e6
#' )
#' sceptre_object |>
#'   set_analysis_parameters(
#'     side = "left",
#'     resampling_mechanism = "permutations",
#'     discovery_pairs = discovery_pairs,
#'     positive_control_pairs = positive_control_pairs
#'   ) |>
#'   assign_grnas(method = "thresholding") |>
#'   run_qc() |>
#'   run_calibration_check(
#'     parallel = TRUE,
#'     n_processors = 2
#'   ) |>
#'   run_power_check() |>
#'   run_discovery_analysis(
#'     parallel = TRUE,
#'     n_processors = 2
#'   ) |>
#'   write_outputs_to_directory(paste0(tempdir(), "/sceptre_outputs"))
#' # files written to "sceptre_outputs" in tempdir()
write_outputs_to_directory <- function(sceptre_object, directory) {
  # 0. create directory
  if (!dir.exists(directory)) dir.create(path = directory, recursive = TRUE)
  fs <- paste0(directory, "/", c(
    "analysis_summary.txt", "plot_assign_grnas.png", "plot_run_qc.png",
    "plot_run_calibration_check.png", "plot_run_power_check.png", "plot_run_discovery_analysis.png",
    "results_run_calibration_check.rds", "results_run_power_check.rds", "results_run_discovery_analysis.rds"
  ))
  for (f in fs) if (file.exists(f)) file.remove(f)

  # 1. create analysis_summary.txt file
  summary_file_fp <- paste0(directory, "/analysis_summary.txt")
  sink(file = summary_file_fp, append = FALSE)
  print(sceptre_object)
  sink(NULL)

  # 2. determine the functions that have been called
  plotting_params <- list(device = "png", scale = 1.1, width = 5, height = 4, dpi = 330)
  functs_run <- sceptre_object@functs_called
  functs_run_plots <- functs_run[names(functs_run) %in% c("assign_grnas", "run_qc", "run_calibration_check", "run_power_check", "run_discovery_analysis")]
  functs_run_plots <- c(functs_run_plots, "grna_count_distributions" = TRUE)
  for (funct in names(functs_run_plots)) {
    if (functs_run_plots[[funct]]) {
      plotting_params$plot <- do.call(what = paste0("plot_", funct), args = list(sceptre_object))
      plotting_params$filename <- paste0(directory, "/plot_", funct, ".png")
      do.call(what = ggplot2::ggsave, args = plotting_params)
    }
  }

  # 3. save results
  for (analysis in c("run_calibration_check", "run_power_check", "run_discovery_analysis")) {
    if (functs_run_plots[[analysis]]) {
      res <- get_result(sceptre_object = sceptre_object, analysis = analysis)
      saveRDS(object = res, file = paste0(directory, "/results_", analysis, ".rds"))
    }
  }

  # 4. save gRNA-to-cell assignments
  grna_assignments <- get_grna_assignments(sceptre_object)
  saveRDS(object = grna_assignments, file = paste0(directory, "/grna_assignment_matrix.rds"))
  return(NULL)
}


skip_assign_grnas_and_run_qc <- function(sceptre_object, parallel, n_processors) {
  functs_run <- sceptre_object@functs_called
  if (functs_run[["import_data"]] && functs_run[["set_analysis_parameters"]]) {
    if (!functs_run[["assign_grnas"]] && !functs_run[["run_qc"]]) {
      cat(crayon::red("Note: Automatically running `assign_grnas()` and `run_qc()` with default arguments.\n\n"))
      sceptre_object <- assign_grnas(sceptre_object, parallel = parallel, n_processors = n_processors) |> run_qc() # advance by two
    }
    if (functs_run[["assign_grnas"]] && !functs_run[["run_qc"]]) {
      cat(crayon::red("Note: Automatically running `run_qc()` with default arguments.\n\n"))
      sceptre_object <- sceptre_object |> run_qc() # advance by one
    }
  }
  return(sceptre_object)
}
Katsevich-Lab/sceptre documentation built on Nov. 24, 2024, 9:28 a.m.