R/check_functions.R

Defines functions check_discovery_analysis_inputs check_calibration_check_inputs check_run_qc_inputs check_assign_grna_inputs check_set_analysis_parameters check_import_data_inputs

check_import_data_inputs <- function(response_matrix, grna_matrix, grna_target_data_frame, moi, extra_covariates) {
  # 1. check column names of grna_target_data_frame
  colnames_present <- all(c("grna_id", "grna_target") %in% colnames(grna_target_data_frame))
  if (!colnames_present) {
    stop("The data frame `grna_target_data_frame` should have columns `grna_id` and `grna_target`. The `grna_target` column should specify the target of each individual `grna_id`.")
  }

  # 2. verify that the row names are unique for both response and grna modalities
  response_ids <- rownames(response_matrix)
  grna_ids <- rownames(grna_matrix)
  if (length(response_ids) != length(unique(response_ids))) stop("The rownames of the `response_matrix` must be unique.")
  if (length(grna_ids) != length(unique(grna_ids))) stop("The rownames of the `grna_matrix` must be unique.")

  # 5. ensure that the ampersand symbol (&) is absent from the grna ids; ensure that no gRNA is named "non-targeting"
  problematic_grna_ids <- grep(pattern = "&", x = grna_ids)
  if (length(problematic_grna_ids) >= 1) {
    stop(paste0("The ampersand character (&) cannot be present in the gRNA IDs. The following gRNA IDs contain an ampersand: ", paste0(grna_ids[problematic_grna_ids], collapse = ", ")))
  }
  if (any(grna_ids == "non-targeting")) {
    stop("No individual gRNA can have the ID `non-targeting`. The string `non-targeting` is reserved for the `grna_target` column of the `grna_target_data_frame`.")
  }

  # 6. check that the ids in the grna group data frame are a subset of the ids in the grna matrix
  if (!all(grna_target_data_frame$grna_id %in% rownames(grna_matrix))) {
    stop("The column `grna_id` of the `grna_target_data_frame` must be a subset of the row names of the grna expression matrix. The row names of the grna expression matrix are as follows: ", paste0(rownames(grna_matrix), collapse = ", "))
  }

  # 7. check type of input matrices
  check_matrix_class <- function(input_matrix, input_matrix_name, allowed_matrix_classes) {
    ok_class <- vapply(
      X = allowed_matrix_classes,
      function(mat_class) methods::is(input_matrix, mat_class),
      FUN.VALUE = logical(1)
    ) |> any()
    if (!ok_class) {
      stop(paste0("`", input_matrix_name, "` must be an object of class ", paste0(allowed_matrix_classes, collapse = ", "), "."))
    }
  }
  check_matrix_class(response_matrix, "response_matrix", c("matrix", "dgTMatrix", "dgCMatrix", "dgRMatrix", "odm"))
  check_matrix_class(grna_matrix, "grna_matrix", c("matrix", "dgTMatrix", "dgCMatrix", "dgRMatrix", "lgTMatrix", "lgCMatrix", "lgRMatrix", "odm"))

  # 8. check for agreement in number of cells
  check_ncells <- ncol(response_matrix) == ncol(grna_matrix)
  if (nrow(extra_covariates) >= 1L) {
    check_ncells <- check_ncells && (ncol(response_matrix) == nrow(extra_covariates))
  }
  if (!check_ncells) {
    stop("The number of cells in the `response_matrix`, `grna_matrix`, and `extra_covariates` (if supplied) must coincide.")
  }

  # 9. if cell barcodes are provided for at least two of `response_matrix`, `grna_matrix`, and `extra_covariates`,
  # then they must be identical
  barcode_list <- list(
    response_matrix = colnames(response_matrix), grna_matrix = colnames(grna_matrix),
    extra_covariates = rownames(extra_covariates)
  )
  # for matrices we can just check if the names are not NULL, but `extra_covariates` is a data.frame so
  # non-default names were provided if (1) it is not just `data.frame()` and (2) the names are not
  # just "1", "2", ...
  were_names_provided <- c(
    !is.null(barcode_list$response_matrix),
    !is.null(barcode_list$grna_matrix),
    nrow(extra_covariates) > 0 && !identical(barcode_list$extra_covariates, as.character(seq_len(nrow(extra_covariates))))
  )
  # If at least 2 non-default barcode names were provided, they must all be identical.
  # This is done by looping over all pairs of non-default names
  barcodes_with_names <- barcode_list[were_names_provided]
  if (length(barcodes_with_names) >= 2) {
    for (i in seq_len(length(barcodes_with_names) - 1)) {
      for (j in seq(i + 1, length(barcodes_with_names))) {
        if (!identical(barcodes_with_names[[i]], barcodes_with_names[[j]])) {
          stop(
            "You have provided cell barcodes in the `", names(barcodes_with_names)[i],
            "` and `", names(barcodes_with_names)[j], "`. These cell barcodes must be identical across objects."
          )
        }
      }
    }
  }

  # 10. check that column names of extra_covariates are not already taken
  reserved_covariate_names <- c("response_n_nonzero", "response_n_umis", "response_p_mito", "grna_n_nonzero", "grna_n_umis")
  extra_covariate_names <- colnames(extra_covariates)
  if (any(extra_covariate_names %in% reserved_covariate_names)) {
    stop("The covariate names `response_n_nonzero`, `response_n_umis`, `response_p_mito`, `grna_n_nonzero`, and `grna_n_umis` are reserved. Change the column names of the `extra_covariates` data frame.")
  }

  # 11. verify that the types of the extra covariates are acceptable; if factor, check correctness of factor
  for (extra_covariate_name in extra_covariate_names) {
    v <- extra_covariates[, extra_covariate_name]
    accept_type <- methods::is(v, "numeric") || methods::is(v, "character") ||
      methods::is(v, "factor") || methods::is(v, "logical")
    if (!accept_type) {
      stop("The column `", extra_covariate_name, "` of the `extra_covariates` data frame should be of type numeric, character, or factor.")
    }
    if (methods::is(v, "factor")) {
      if (length(levels(v)) != length(unique(v))) {
        stop("The factor column `", extra_covariate_name, "` is incorrectly formatted. The number of unique elements in this column must equal the number of factors in this column. Consider relabeling the factors or converting this column into a character vector.")
      }
    }
  }

  # 12. verify that moi is specified
  if (!(moi %in% c("low", "high"))) {
    stop("`moi` should be either `low` or `high`.")
  }

  # 13. fail if extra_covariates has NA or inifinite values
  if (any(is.na(extra_covariates))) {
    stop("`extra_covariates` has NA values that need to be removed.")
  }
  if (vapply(extra_covariates, function(vect) any(is.infinite(vect)), FUN.VALUE = logical(1)) |> any()) {
    stop("`extra_covariates` has infinite values that need to be removed.")
  }

  return(NULL)
}


check_set_analysis_parameters <- function(sceptre_object, formula_object, response_grna_target_pairs_list,
                                          control_group, resampling_mechanism, side, low_moi,
                                          grna_integration_strategy, resampling_approximation) {
  response_matrix <- get_response_matrix(sceptre_object)
  grna_matrix <- get_grna_matrix(sceptre_object)
  covariate_data_frame <- sceptre_object@covariate_data_frame
  grna_target_data_frame <- sceptre_object@grna_target_data_frame

  # 1. if response_grna_target_pairs has been supplied, check its characteristics
  for (idx in seq_along(response_grna_target_pairs_list)) {
    response_grna_target_pairs <- response_grna_target_pairs_list[[idx]]
    if (nrow(response_grna_target_pairs) >= 1L) {
      df_name <- names(response_grna_target_pairs_list)[idx]
      # i. verify that `grna_target` and `response_id` are columns
      if (!all(c("grna_target", "response_id") %in% colnames(response_grna_target_pairs))) {
        stop("The data frame `", df_name, "` must contain the columns `grna_target` and `response_id`.")
      }
      # ii. check that the response ids in the `response_grna_target_pairs` data frame are a subset of the response ids
      if (!all(response_grna_target_pairs$response_id %in% rownames(response_matrix))) {
        stop("The column `response_id` of the `", df_name, "` data frame must be a subset of the row names of the response expression matrix.")
      }
      # iii. check that the `grna_target` column of the `response_grna_target_pairs` data frame is a subset of the `grna_target` column of the `grna_target_data_frame`
      if (!all(response_grna_target_pairs$grna_target %in% grna_target_data_frame$grna_target)) {
        stop("The column `grna_target` of the `", df_name, "` data frame must be a subset of the colummn `grna_target` of the `grna_target_data_frame`.")
      }
      # iv. ensure that "non-targeting" is not a group in the pairs to analyze data frame
      if ("non-targeting" %in% unique(response_grna_target_pairs$grna_target)) {
        stop("The `", df_name, "` data frame cannot contain the gRNA group `non-targeting`. To test non-targeting gRNAs against responses, run the calibration check.")
      }
      # v. ensure that rows are not duplicated
      if (nrow(response_grna_target_pairs) != nrow(dplyr::distinct(response_grna_target_pairs))) {
        stop("The `", df_name, "` data frame has duplicate rows.")
      }
    }
  }

  # 2. check that there are no offsets in the formula object
  if (grepl("offset", as.character(formula_object)[2])) stop("Offsets are not currently supported in formula objects.")

  # 3. check that the variables in the formula object are a subset of the column names of the covariate data frame
  formula_object_vars <- all.vars(formula_object)
  check_var <- formula_object_vars %in% colnames(covariate_data_frame)
  if (!all(check_var)) {
    stop(paste0("The variables in the `formula_object` must be a subset of the columns of the `covariate_data_frame`. Check the following variables: ", paste0(formula_object_vars[!check_var], collapse = ", ")))
  }

  # 4. verify that control group is either nt_cells, complement, or default
  if (!control_group %in% c("nt_cells", "complement", "default")) {
    stop("`control_group` should set to `nt_cells`, `complement`, or `default`.")
  }

  # 5. verify that resampling_mechanism is one of "permutations", "crt", or "default"
  if (!(resampling_mechanism %in% c("permutations", "crt", "default"))) {
    stop("`resampling_mechanism` should set to `permutations`, `crt`, or `default`.")
  }

  # 6. verify that the moi is consistent with the control group
  if (!low_moi && control_group == "nt_cells") {
    stop("The control group cannot be the NT cells in high MOI.")
  }

  # 7. verify that, if the control_group is NT cells, there are NT gRNAs present
  if (control_group == "nt_cells") {
    nt_present <- "non-targeting" %in% grna_target_data_frame$grna_target
    if (!nt_present) {
      stop("The string 'non-targeting' must be present in the `grna_target` column of the `grna_target_data_frame` is `control_group` is set to 'nt_cells'.")
    }
  }

  # 8. verify that "side" is among "both", "left", or "right"
  if (!(side %in% c("both", "left", "right"))) {
    stop("`side` must be one of 'both', 'left', or 'right'.")
  }

  # 9. verify that "grna_integration_strategy" is union or singleton
  if (!(grna_integration_strategy %in% c("union", "singleton", "bonferroni"))) {
    stop("`grna_integration_strategy` must be either 'union', 'singleton', or 'bonferroni'.")
  }

  # 10. if using a backing .odm file, verify that resampling mechanism is permutations
  if (methods::is(get_response_matrix(sceptre_object), "odm") && (resampling_mechanism != "permutations")) {
    stop("`resampling_mechanism` must be set to 'permutations' when using an ondisc-backed sceptre_object.")
  }

  # 11. verify resampling_approximation acceptable
  if (!(resampling_approximation %in% c("skew_normal", "no_approximation"))) {
    stop("`resampling_approximation` must be set to 'skew_normal' or 'no_approximation'.")
  }

  return(NULL)
}


check_assign_grna_inputs <- function(sceptre_object, assignment_method, hyperparameters, n_processors) {
  if (!(assignment_method %in% c("maximum", "mixture", "thresholding"))) {
    stop("`assignment_method` must be `mixture`, `maximum`, or `thresholding`.")
  }

  # 1. check that assignment method is OK for high MOI
  if (!sceptre_object@low_moi && assignment_method == "maximum") {
    stop("`assignment_method` cannot be `maximum` in high-MOI.")
  }

  # 2. check the hyperparameters
  hyperparam_names <- names(hyperparameters)
  # i. maximum option
  if (assignment_method == "maximum") {
    if (!setequal(hyperparam_names, c("umi_fraction_threshold", "min_grna_n_umis_threshold"))) {
      stop("The hyperparameter list must contain the fields `umi_fraction_threshold` and `min_grna_n_umis_threshold`.")
    }
    if (!(hyperparameters[["umi_fraction_threshold"]] > 0.0 && hyperparameters[["umi_fraction_threshold"]] < 1.0)) {
      stop("`umi_fraction_threshold` should be a numeric greater than 0.0 and be less than 1.0.")
    }
    if (hyperparameters[["min_grna_n_umis_threshold"]] < 0L) {
      stop("`min_grna_n_umis_threshold` should be an integer greater than 0.")
    }
  }
  # ii. thresholding operation
  if (assignment_method == "thresholding") {
    if (!setequal(hyperparam_names, "threshold")) {
      stop("The hyperparameter list must contain the single entry `threshold`.")
    }
    if (hyperparameters[["threshold"]] < 1) {
      stop("`threshold` should be an integer greater than or equal to 1.")
    }
  }
  # iii. mixture model
  if (assignment_method == "mixture") {
    if (!setequal(hyperparam_names, c("n_em_rep", "pi_guess_range", "g_pert_guess_range", "n_nonzero_cells_cutoff", "backup_threshold", "probability_threshold", "formula_object"))) {
      stop("The hyperparameter list must contain the fields `n_em_rep`, `pi_guess_range`, `g_pert_guess_range`, `n_nonzero_cells_cutoff`, `backup_threshold`, and `formula_object`.")
    }
    if (hyperparameters[["n_em_rep"]] <= 0 || hyperparameters[["n_em_rep"]] >= 100) {
      stop("`n_em_rep` should be an integer greater than zero and less than 100.")
    }
    pi_guess_range <- hyperparameters[["pi_guess_range"]]
    if (length(pi_guess_range) != 2 || any(pi_guess_range < 0) ||
      any(pi_guess_range > 1) || pi_guess_range[2] <= pi_guess_range[1]) {
      stop("`pi_guess_range` should be a numeric vector of length 2, where the first entry is less than the second and both entries are in the interval [0,1].")
    }
    g_pert_guess_range <- hyperparameters[["g_pert_guess_range"]]
    if (length(g_pert_guess_range) != 2 || any(g_pert_guess_range < 0) ||
      any(pi_guess_range > 20) || g_pert_guess_range[2] <= g_pert_guess_range[1]) {
      stop("`g_pert_guess_range` should be a numeric vector of length 2, where the first entry is less than the second and both entries are in the interval [0,20].")
    }
    if (hyperparameters[["n_nonzero_cells_cutoff"]] <= 0) {
      stop("`n_nonzero_cells_cutoff` should be an integer greater than or equal to 1.")
    }
    if (hyperparameters[["backup_threshold"]] <= 0) {
      stop("`backup_threshold` should be an integer greater than or equal to 1.")
    }
    if (hyperparameters[["probability_threshold"]] <= 0 || hyperparameters[["probability_threshold"]] >= 1) {
      stop("`probability_threshold` should be a numeric in the interval (0,1).")
    }
  }

  # 3. check n_processors argument
  if (!(identical(n_processors, "auto") || (is.numeric(n_processors) && n_processors >= 2))) {
    stop("`n_processors` should be set to the string 'auto' or an integer greater than or equal to 2.")
  }

  return(NULL)
}


check_run_qc_inputs <- function(n_nonzero_trt_thresh, n_nonzero_cntrl_thresh, response_n_umis_range, response_n_nonzero_range, initial_grna_assignment_list) {
  if (n_nonzero_trt_thresh < 0 || n_nonzero_cntrl_thresh < 0) {
    stop("`n_nonzero_trt_thresh` and `n_nonzero_cntrl_thresh` must be greater than or equal to zero.")
  }
  if (min(response_n_umis_range) < 0 || max(response_n_umis_range) > 1 ||
    length(response_n_umis_range) != 2L || response_n_umis_range[1] > response_n_umis_range[2]) {
    stop("`response_n_umis_range` must an interval in the range [0,1].")
  }
  if (min(response_n_nonzero_range) < 0 || max(response_n_nonzero_range) > 1 ||
    length(response_n_nonzero_range) != 2L || response_n_nonzero_range[1] > response_n_nonzero_range[2]) {
    stop("`response_n_nonzero_range` must an interval in the range [0,1].")
  }
  if (all(vapply(initial_grna_assignment_list, length, FUN.VALUE = integer(1)) == 0L)) {
    stop("At least one gRNA must be assigned to at least one cell to call `run_qc()`.")
  }
  return(NULL)
}


check_calibration_check_inputs <- function(sceptre_object, n_calibration_pairs, n_processors) {
  grna_target_data_frame <- sceptre_object@grna_target_data_frame
  control_group_complement <- sceptre_object@control_group_complement
  n_nt_grnas <- grna_target_data_frame |>
    dplyr::filter(grna_group == "non-targeting") |>
    nrow()
  # 1. check number of gRNAS
  if (!control_group_complement) {
    if (n_nt_grnas < 2) stop("Two or more non-targeting gRNAs must be present to run the calibration check when using the NT cells as the control group. gRNAs that are non-targeting should be assigned a gRNA group label of 'non-targeting' in the `grna_target_data_frame`.")
  } else {
    if (n_nt_grnas < 1) stop("At least one non-targeting gRNA must be present to run the calibration check. gRNAs that are non-targeting should be assigned a gRNA group label of 'non-targeting' in the `grna_target_data_frame`.")
  }
  # 2. check number of calibration pairs
  if (n_calibration_pairs == 0L) {
    stop("Cannot run a calibration check on zero negative control pairs.")
  }
  # 3. check n_processors
  if (!(identical(n_processors, "auto") || (is.numeric(n_processors) && n_processors >= 2))) {
    stop("`n_processors` should be set to the string 'auto' or an integer greater than or equal to 2.")
  }
  return(NULL)
}


check_discovery_analysis_inputs <- function(response_grna_group_pairs,
                                            control_group_complement,
                                            grna_target_data_frame,
                                            calibration_check_run,
                                            pc_analysis, calibration_result,
                                            n_ok_pairs, n_processors) {
  # 1. check that positive control pairs are available
  if (nrow(response_grna_group_pairs) == 0L) {
    stop(
      if (pc_analysis) "Positive control" else "Discovery", " pairs have not been supplied. Thus, the ",
      if (pc_analysis) "power check" else "discovery analysis", " cannot be run. You can supply ",
      if (pc_analysis) "positive control" else "discovery", " pairs in the function set_analysis_parameters()."
    )
  }

  # 2. check that negative control gRNAs are present (if the control group is the nt cells)
  if (!control_group_complement) {
    nt_present <- "non-targeting" %in% grna_target_data_frame$grna_group
    if (!nt_present) {
      stop(
        "At least one non-targeting gRNA must be present to run a ",
        if (pc_analysis) "power check" else "discovery analysis",
        " when the control group is the NT set."
      )
    }
  }

  # 3. check for the presence of a calibration result
  if (nrow(calibration_result) == 0L) {
    cat(crayon::red(paste0("Warning: The calibration check (`run_calibration_check()`) should be run before the ", ifelse(pc_analysis, "power check", "discovery analysis"), ".\n\n")))
  }

  # 4. check that at least one pair passes qc
  if (n_ok_pairs == 0L) {
    stop("Zero pairs pass pairwise QC. Cannot run analysis.")
  }

  # 5. check n_processors
  if (!(identical(n_processors, "auto") || (is.numeric(n_processors) && n_processors >= 2))) {
    stop("`n_processors` should be set to the string 'auto' or an integer greater than or equal to 2.")
  }

  return(NULL)
}
Katsevich-Lab/sceptre documentation built on Nov. 24, 2024, 9:28 a.m.