R/s4_helpers.R

Defines functions load_row perform_status_check_and_update

# show method
setMethod("show", signature = signature("sceptre_object"), function(object) {
  # 0. determine the functions that have been run
  funct_run_vect <- object@functs_called

  # 1. obtain the basic information
  n_cells <- ncol(get_response_matrix(object))
  n_responses <- nrow(get_response_matrix(object))
  grna_target_data_frame <- object@grna_target_data_frame
  n_nt_grnas <- grna_target_data_frame |>
    dplyr::filter(grna_target == "non-targeting") |>
    nrow()
  targeting_grnas_df <- grna_target_data_frame |>
    dplyr::filter(grna_target != "non-targeting")
  n_targeting_grna_targets <- length(unique(targeting_grnas_df$grna_target))
  n_targeting_grnas <- nrow(targeting_grnas_df)
  n_covariates <- length(object@covariate_names)
  covariates <- paste0(object@covariate_names, collapse = ", ")
  moi <- ifelse(object@low_moi, "Low", "High")
  cat(paste0(
    "An object of class ", crayon::blue("sceptre_object"), ".\n\nAttributes of the data:\n\t\U2022 ",
    crayon::blue(n_cells), " cells", if (funct_run_vect["run_qc"]) {
      paste0(" (", crayon::blue(length(object@cells_in_use)), " after cellwise QC)")
    } else {
      NULL
    }, "\n\t\U2022 ",
    crayon::blue(n_responses), " responses\n\t\U2022 ",
    crayon::blue(moi), " multiplicity-of-infection \n\t\U2022 ",
    crayon::blue(n_targeting_grnas), " targeting gRNAs (distributed across ", crayon::blue(n_targeting_grna_targets), " targets) \n\t\U2022 ",
    crayon::blue(n_nt_grnas), " non-targeting gRNAs \n\t\U2022 ",
    crayon::blue(n_covariates), " covariates (", covariates, ")"
  ))
})


#' Print
#'
#' `print()` prints information about the dataset and the status of the analysis to the console. The output contains several fields: Attributes of the data (summarizing key features of the data), Analysis status (indicating the analysis functions that have been called), Analysis parameters (summarizing the analysis parameters set in `set_analysis_parameters()`), gRNA-to-cell assignment information (summarizing the outcome of the gRNA-to-cell assignment step), and Summary of results (summarizing the key analysis results). A subset of these fields may be printed, depending on the status of the analysis.
#'
#' @param x a `sceptre_object`
#' @return the value NULL
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#' print(sceptre_object)
setMethod("print", signature = signature("sceptre_object"), function(x) {
  show(x)

  # 1. print analysis status
  funct_run_vect <- x@functs_called
  get_mark <- function(bool) ifelse(bool, crayon::green("\u2713"), crayon::red("\u2717"))
  cat("\n\nAnalysis status:\n")
  for (i in seq_along(funct_run_vect)) {
    cat(paste0("\t", get_mark(funct_run_vect[i]), " ", names(funct_run_vect)[i], "()\n"))
  }

  # 2. print analysis parameters
  n_discovery_pairs <- x@n_discovery_pairs
  disc_pair_qc_performed <- length(x@n_ok_discovery_pairs) >= 1
  n_pc_pairs <- x@n_positive_control_pairs
  pc_pair_qc_performed <- length(x@n_ok_positive_control_pairs) >= 1
  cat(paste0(
    "\nAnalysis parameters: \n",
    "\t\U2022 Discovery pairs:", if (x@nuclear) {
      " trans"
    } else {
      if (length(n_discovery_pairs) == 0) {
        " not specified"
      } else {
        paste0(
          " data frame with ", crayon::blue(n_discovery_pairs), " pairs",
          if (funct_run_vect["run_qc"] && n_discovery_pairs >= 1L) paste0(" (", crayon::blue(x@n_ok_discovery_pairs), " after pairwise QC)") else NULL
        )
      }
    },
    "\n\t\U2022 Positive control pairs:", if (length(n_pc_pairs) == 0) {
      " not specified"
    } else {
      paste0(
        " data frame with ", crayon::blue(n_pc_pairs), " pairs",
        if (funct_run_vect["run_qc"] && n_pc_pairs >= 1L) paste0(" (", crayon::blue(x@n_ok_positive_control_pairs), " after pairwise QC)") else NULL
      )
    },
    "\n\t\U2022 Sidedness of test: ", if (length(x@side_code) == 0L) "not specified" else crayon::blue(c("left", "both", "right")[x@side_code + 2L]),
    if (!x@low_moi) {
      NULL
    } else {
      paste0("\n\t\U2022 Control group: ", if (length(x@control_group_complement) == 0L) "not specified" else crayon::blue(ifelse(x@control_group_complement, "complement set", "non-targeting cells")))
    },
    "\n\t\U2022 Resampling mechanism: ", if (length(x@run_permutations) == 0L) "not specified" else crayon::blue(ifelse(x@run_permutations, "permutations", "conditional resampling")),
    "\n\t\U2022 gRNA integration strategy: ", if (length(x@grna_integration_strategy) == 0L) "not specified" else crayon::blue(x@grna_integration_strategy),
    "\n\t\U2022 Resampling approximation: ", if (length(x@resampling_approximation) == 0L) "not specified" else crayon::blue(gsub(pattern = "_", replacement = " ", fixed = TRUE, x = x@resampling_approximation)),
    "\n\t\U2022 Multiple testing adjustment: ", if (x@nuclear || length(x@multiple_testing_method) == 0L) "none" else paste0(crayon::blue(x@multiple_testing_method), " at level ", crayon::blue(x@multiple_testing_alpha)),
    "\n\t\U2022 N nonzero treatment cells threshold: ", if (length(x@n_nonzero_trt_thresh) == 0L) "not specified" else crayon::blue(x@n_nonzero_trt_thresh),
    "\n\t\U2022 N nonzero control cells threshold: ", if (length(x@n_nonzero_cntrl_thresh) == 0L) "not specified" else crayon::blue(x@n_nonzero_cntrl_thresh),
    "\n\t\U2022 Formula object: ", if (length(x@formula_object) == 0L) "not specified" else crayon::blue(as.character(x@formula_object)[2])
  ))

  # 3. print the gRNA-to-cell assignment information
  grna_assignment_run <- funct_run_vect[["assign_grnas"]]
  if (grna_assignment_run) {
    mean_cells_per_grna <- x@mean_cells_per_grna
    cat(
      paste0(
        "\n\ngRNA-to-cell assignment information:",
        "\n\t\U2022 Assignment method: ", crayon::blue(x@grna_assignment_method),
        "\n\t\U2022 Mean N cells per gRNA: ", crayon::blue(mean_cells_per_grna |> round(2)),
        "\n\t\U2022 Mean N gRNAs per cell (MOI): ", if (x@grna_assignment_method == "maximum") "not computed when using \"maximum\" assignment method" else crayon::blue(x@grnas_per_cell |> mean() |> round(2))
      ),
      if (x@grna_assignment_method == "mixture") paste0("\n\t\U2022 gRNA assignment formula object: ", crayon::blue(as.character(x@grna_assignment_hyperparameters$formula_object)[2])) else NULL
    )
  }

  # 4. print the results summary
  calib_check_run <- funct_run_vect[["run_calibration_check"]]
  discovery_analysis_run <- funct_run_vect[["run_discovery_analysis"]]
  power_check_run <- funct_run_vect[["run_power_check"]]
  if (calib_check_run || discovery_analysis_run) cat("\n\nSummary of results:")
  if (calib_check_run) {
    n_false_rejections <- sum(x@calibration_result$significant)
    mean_lfc <- signif(mean(x@calibration_result$log_2_fold_change), 2)
    n_calib_pairs <- nrow(x@calibration_result)
    cat(paste0(
      "\n\t\U2022 N", crayon::red(" negative control "), "pairs called as significant: ", crayon::blue(paste0(n_false_rejections, "/", n_calib_pairs)),
      "\n\t\U2022 Mean log-2 FC for", crayon::red(" negative control "), "pairs: ", crayon::blue(mean_lfc)
    ))
  }
  if (power_check_run) {
    median_pc_p_value <- stats::median(x@power_result$p_value, na.rm = TRUE)
    cat(paste0("\n\t\U2022 Median", crayon::green(" positive control "), "p-value: ", crayon::blue(signif(median_pc_p_value, 2))))
  }
  if (discovery_analysis_run) {
    n_discoveries <- sum(x@discovery_result$significant, na.rm = TRUE)
    n_discovery_pairs <- x@n_ok_discovery_pairs
    cat(paste0("\n\t\U2022 N", crayon::yellow(" discovery pairs "), "called as significant: ", crayon::blue(paste0(n_discoveries, "/", n_discovery_pairs))))
  }
})


#' Plot
#'
#' `plot()` creates a plot depicting the current state of a `sceptre_object`.
#'
#' `plot()` is "generic" in the sense that it dispatches a specific plotting function based on the pipeline function that was most recently called on the `sceptre_object`. For example, if `run_assign_grnas()` is the most recently called pipeline function, then `plot()` dispatches `plot_run_assign_grnas()`. Similarly, if `run_power_check()` is the most recently called pipeline function, then `plot()` dispatches `plot_run_power_check()`, and so on. Users can pass arguments to the function dispatched by `plot()` as named arguments to `plot()`.
#'
#' @param x a `sceptre_object`
#' @param y ignored argument
#' @param ... arguments passed to the plotting function dispatched by `plot()`
#' @return a single \code{cowplot} object containing the combined panels (if \code{return_indiv_plots} is set to \code{TRUE}) or a list of the individual panels (if \code{return_indiv_plots} is set to \code{FALSE})
#'
#' @export
#' @examples
#' library(sceptredata)
#' data(highmoi_example_data)
#' data(grna_target_data_frame_highmoi)
#' # import data
#' sceptre_object <- import_data(
#'   response_matrix = highmoi_example_data$response_matrix,
#'   grna_matrix = highmoi_example_data$grna_matrix,
#'   grna_target_data_frame = grna_target_data_frame_highmoi,
#'   moi = "high",
#'   extra_covariates = highmoi_example_data$extra_covariates,
#'   response_names = highmoi_example_data$gene_names
#' )
#' # set analysis parameters, assign grnas
#' sceptre_object <- sceptre_object |>
#'   set_analysis_parameters() |>
#'   assign_grnas(method = "thresholding") |>
#'   plot()
setMethod("plot", signature = signature("sceptre_object"), function(x, y, ...) {
  args <- list(...)
  args[["sceptre_object"]] <- x

  last_function_called <- x@last_function_called
  if (last_function_called %in% c("import_data", "set_analysis_parameters")) {
    stop("There is no generic plot function configured for the ", last_function_called, "() step.")
  }

  funct_to_call <- paste0("plot_", last_function_called)
  p <- do.call(what = funct_to_call, args = args)
  return(p)
})


perform_status_check_and_update <- function(sceptre_object, curr_funct) {
  rank_vector <- c(
    import_data = 1L, set_analysis_parameters = 2L, assign_grnas = 3L,
    run_qc = 4L, run_power_check = 5L, run_discovery_analysis = 5L, run_calibration_check = 5L
  )
  functs_called <- sceptre_object@functs_called
  curr_rank <- rank_vector[[curr_funct]]
  direct_upstream_functs <- names(rank_vector)[rank_vector == curr_rank - 1L]
  downstream_functs <- names(rank_vector)[rank_vector > curr_rank]
  # verify that the direct upstream funct has been called
  if (!all(functs_called[direct_upstream_functs])) {
    stop(paste0(
      "The function", if (length(direct_upstream_functs) >= 2L) "s " else " ",
      paste0("`", direct_upstream_functs, "()`", collapse = ", "),
      " must be called before `", curr_funct, "()` is called."
    ))
  }
  # set current funct to true
  functs_called[curr_funct] <- TRUE
  # set all downstream functions to false
  functs_called[downstream_functs] <- FALSE
  # update sceptre_object and return
  sceptre_object@functs_called <- functs_called
  sceptre_object@last_function_called <- curr_funct
  return(sceptre_object)
}


load_row <- function(mat, id) {
  if (methods::is(mat, "odm")) {
    mat[id, ]
  } else if (methods::is(mat, "dgRMatrix")) {
    load_csr_row(j = mat@j, p = mat@p, x = mat@x, row_idx = which(id == rownames(mat)), n_cells = ncol(mat))
  }
}
Katsevich-Lab/sceptre documentation built on Nov. 24, 2024, 9:28 a.m.