#' @name
#' agglomerate-methods
#'
#' @title
#' Agglomerate data using taxonomic information or other grouping
#'
#' @description
#' Agglomeration functions can be used to sum-up data based on specific criteria
#' such as taxonomic ranks, variables or prevalence.
#'
#' \code{agglomerateByRank} can be used to sum up data based on associations
#' with certain taxonomic ranks, as defined in \code{rowData}. Only available
#' \code{\link{taxonomyRanks}} can be used.
#'
#' \code{agglomerateByVariable} merges data on rows or columns of a
#' \code{SummarizedExperiment} as defined by a \code{factor} alongside the
#' chosen dimension. This function allows agglomeration of data based on other
#' variables than taxonomy ranks.
#' Metadata from the \code{rowData} or \code{colData} are
#' retained as defined by \code{archetype}.
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{assay}} are
#' agglomerated, i.e. summed up. If the assay contains values other than counts
#' or absolute values, this can lead to meaningless values being produced.
#'
#' @details
#' Agglomeration sums up the values of assays at the specified taxonomic level.
#' With certain assays, e.g. those that include binary or negative values, this
#' summing can produce meaningless values. In those cases, consider performing
#' agglomeration first, and then applying the transformation afterwards.
#'
#' \code{agglomerateByVariable} works similarly to
#' \code{\link[scuttle:sumCountsAcrossFeatures]{sumCountsAcrossFeatures}}.
#' However, additional support for \code{TreeSummarizedExperiment} was added and
#' science field agnostic names were used. In addition the \code{archetype}
#' argument lets the user select how to preserve row or column data.
#'
#' For merge data of assays the function from \code{scuttle} are used.
#'
#' @return
#' \code{agglomerateByRank} returns a taxonomically-agglomerated,
#' optionally-pruned object of the same class as \code{x}.
#' \code{agglomerateByVariable} returns an object of the same class as \code{x}
#' with the specified entries merged into one entry in all relevant components.
#' \code{agglomerateByRank} returns a taxonomically-agglomerated,
#' optionally-pruned object of the same class as \code{x}.
#'
#' @inheritParams getPrevalence
#'
#' @param empty.fields \code{Character vector}. Defines which values should be
#' regarded as empty. (Default: \code{c(NA, "", " ", "\t")}). They will be
#' removed if \code{na.rm = TRUE} before agglomeration.
#'
#' @param empty.rm \code{Logical scalar}. Defines whether rows including
#' \code{empty.fields} in specified \code{rank} will be excluded.
#' (Default: \code{TRUE})
#'
#' @param agglomerateTree Deprecated. Use \code{update.tree} instead.
#'
#' @param agglomerate.tree Deprecated. Use \code{update.tree} instead.
#'
#' @param ... arguments passed to \code{agglomerateByRank} function for
#' \code{SummarizedExperiment} objects,
#' to \code{\link[=agglomerate-methods]{agglomerateByVariable}} and
#' \code{\link[scuttle:sumCountsAcrossFeatures]{sumCountsAcrossFeatures}},
#' to \code{getPrevalence} and \code{getPrevalentTaxa} and used in
#' \code{agglomeratebyPrevalence}
#' \itemize{
#' \item \code{empty.ranks.rm}: \code{Logical scalar}. Determines
#' whether to remove those columns of rowData that include only NAs after
#' agglomeration. (Default: \code{FALSE})
#'
#' \item \code{empty.rm}: \code{Logical scalar}. Determines
#' whether to remove rows that do not belong to any group, i.e., that
#' have \code{NA} value. (Default: \code{FALSE})
#'
#' \item \code{make.unique}: \code{Logical scalar}. Determines
#' whether to make rownames unique. (Default: \code{TRUE})
#'
#' \item \code{detection}: The threshold value for determining presence
#' or absence. A value in \code{x} must exceed this threshold to be
#' considered present.
#'
#' \item \code{assay.type}: \code{Character scalar}. Specifies the assay
#' used to calculate prevalence. (Default: \code{"counts"})
#'
#' \item \code{prevalence}: Prevalence threshold (in 0 to 1). The
#' required prevalence is strictly greater by default. To include the
#' limit, set \code{include.lowest} to \code{TRUE}.
#'
#' \item \code{update.refseq}: \code{Logical scalar}. Should a
#' consensus sequence be calculated? If set to \code{FALSE}, the result
#' from \code{archetype} is returned; If set to \code{TRUE} the result
#' from
#' \code{\link[DECIPHER:ConsensusSequence]{DECIPHER::ConsensusSequence}}
#' is returned. (Default: \code{FALSE})
#'
#' \item \code{archetype} Of each level of \code{group}, which element
#' should be regarded as the archetype and metadata in the columns or
#' rows kept, while merging? This can be single integer value or an
#' integer vector of the same length as \code{levels(group)}. (Default:
#' \code{1L}, which means the first element encountered per
#' factor level will be kept)
#' }
#'
#' @param altexp \code{Character scalar} or \code{integer scalar}.
#' Specifies an alternative experiment containing the input data.
#'
#' @param altexp.rm \code{Logical scalar}. Should alternative
#' experiments be removed prior to agglomeration? This prevents too many
#' nested alternative experiments by default. (Default:
#' \code{TRUE})
#'
#' @param strip_altexp Deprecated. Use \code{altexp.rm} instead.
#'
#' @param by \code{Character scalar}. Determines if data is merged
#' row-wise / for features ('rows') or column-wise / for samples ('cols').
#' Must be \code{'rows'} or \code{'cols'}.
#'
#' @param group \code{Character scalar}, \code{character vector} or
#' \code{factor vector}. A column name from \code{rowData(x)} or
#' \code{colData(x)} or alternatively a vector specifying how the merging is
#' performed. If vector, the value must be the same length as
#' \code{nrow(x)/ncol(x)}. Rows/Cols corresponding to the same level will be
#' merged. If \code{length(levels(group)) == nrow(x)/ncol(x)}, \code{x} will be
#' returned unchanged.
#'
#' @param f Deprecated. Use \code{group} instead.
#'
#' @param update.tree \code{Logical scalar}. Should
#' \code{rowTree()} also be merged? (Default: \code{FALSE})
#'
#' @param mergeTree Deprecated. Use \code{update.tree} instead.
#'
#' @examples
#'
#' ### Agglomerate data based on taxonomic information
#'
#' data(GlobalPatterns)
#' # print the available taxonomic ranks
#' colnames(rowData(GlobalPatterns))
#' taxonomyRanks(GlobalPatterns)
#'
#' # agglomerate at the Family taxonomic rank
#' x1 <- agglomerateByRank(GlobalPatterns, rank="Family")
#' ## How many taxa before/after agglomeration?
#' nrow(GlobalPatterns)
#' nrow(x1)
#'
#' # agglomerate the tree as well
#' x2 <- agglomerateByRank(GlobalPatterns, rank="Family",
#' update.tree = TRUE)
#' nrow(x2) # same number of rows, but
#' rowTree(x1) # ... different
#' rowTree(x2) # ... tree
#'
#' # If assay contains binary or negative values, summing might lead to
#' # meaningless values, and you will get a warning. In these cases, you might
#' # want to do agglomeration again at chosen taxonomic level.
#' tse <- transformAssay(GlobalPatterns, method = "pa")
#' tse <- agglomerateByRank(tse, rank = "Genus")
#' tse <- transformAssay(tse, method = "pa")
#'
#' # Removing empty labels by setting empty.rm = TRUE
#' sum(is.na(rowData(GlobalPatterns)$Family))
#' x3 <- agglomerateByRank(GlobalPatterns, rank="Family", empty.rm = TRUE)
#' nrow(x3) # different from x2
#'
#' # Because all the rownames are from the same rank, rownames do not include
#' # prefixes, in this case "Family:".
#' print(rownames(x3[1:3,]))
#'
#' # To add them, use getTaxonomyLabels function.
#' rownames(x3) <- getTaxonomyLabels(x3, with.rank = TRUE)
#' print(rownames(x3[1:3,]))
#'
#' # use 'empty.ranks.rm' to remove columns that include only NAs
#' x4 <- agglomerateByRank(
#' GlobalPatterns, rank="Phylum", empty.ranks.rm = TRUE)
#' head(rowData(x4))
#'
#' # If the assay contains NAs, you might want to specify na.rm=TRUE,
#' # since summing-up NAs lead to NA
#' x5 <- GlobalPatterns
#' # Replace first value with NA
#' assay(x5)[1,1] <- NA
#' x6 <- agglomerateByRank(x5, "Kingdom")
#' head( assay(x6) )
#' # Use na.rm=TRUE
#' x6 <- agglomerateByRank(x5, "Kingdom", na.rm = TRUE)
#' head( assay(x6) )
#'
#' ## Look at enterotype dataset...
#' data(enterotype)
#' ## Print the available taxonomic ranks. Shows only 1 available rank,
#' ## not useful for agglomerateByRank
#' taxonomyRanks(enterotype)
#'
#' ### Merge TreeSummarizedExperiments on rows and columns
#'
#' data(esophagus)
#' esophagus
#' plot(rowTree(esophagus))
#' # Get a factor for merging
#' f <- factor(regmatches(rownames(esophagus),
#' regexpr("^[0-9]*_[0-9]*",rownames(esophagus))))
#' merged <- agglomerateByVariable(
#' esophagus, by = "rows", f, update.tree = TRUE)
#' plot(rowTree(merged))
#' #
#' data(GlobalPatterns)
#' GlobalPatterns
#' merged <- agglomerateByVariable(
#' GlobalPatterns, by = "cols", colData(GlobalPatterns)$SampleType)
#' merged
#'
#' @seealso
#' \code{\link[=splitOn]{splitOn}}
#' \code{\link[=unsplitOn]{unsplitOn}}
#' \code{\link[=agglomerate-methods]{agglomerateByVariable}},
#' \code{\link[scuttle:sumCountsAcrossFeatures]{sumCountsAcrossFeatures}},
#' \code{\link[=agglomerate-methods]{agglomerateByRank}},
#' \code{\link[SingleCellExperiment:altExps]{altExps}},
#' \code{\link[SingleCellExperiment:splitAltExps]{splitAltExps}}
#'
NULL
#' @rdname agglomerate-methods
#' @export
setGeneric("agglomerateByRank", signature = "x", function(x, ...)
standardGeneric("agglomerateByRank"))
#' @rdname agglomerate-methods
#' @export
setMethod(
"agglomerateByRank", signature = c(x = "TreeSummarizedExperiment"),
function(x, rank = taxonomyRanks(x)[1], update.tree = agglomerateTree,
agglomerate.tree = agglomerateTree, agglomerateTree = FALSE, ...){
# Input check
if(!.is_a_bool(update.tree)){
stop("'update.tree' must be TRUE or FALSE.", call. = FALSE)
}
#
# If there are multiple rowTrees, it might be that multiple
# trees are preserved after agglomeration even though the
# dataset could be presented with one tree.
# --> order the data so that the taxa are searched from one tree
# first.
if( length(rowTreeNames(x)) > 1 ){
x <- .order_based_on_trees(x)
}
# Agglomerate data by using SCE method
x <- callNextMethod(x, rank = rank, update.tree = update.tree, ...)
return(x)
}
)
#' @rdname agglomerate-methods
#' @importFrom SingleCellExperiment altExp altExp<- altExps<-
#' @export
setMethod(
"agglomerateByRank", signature = c(x = "SingleCellExperiment"),
function(x, rank = taxonomyRanks(x)[1], altexp = NULL,
altexp.rm = strip_altexp, strip_altexp = TRUE, ...){
# Input check
if(!.is_a_bool(altexp.rm)){
stop("'altexp.rm' must be TRUE or FALSE.", call. = FALSE)
}
#
# Get altexp if specified
x <- .check_and_get_altExp(x, altexp)
# Remove altexps if user specified so. As we agglomerate data, they do
# not necessarily represent the "high-level" data anymore. I.e., usually
# altExp includes subsets of TreeSE, but that is not the case anymore.
# That is why we clear the altexp slot.
if( altexp.rm ){
altExps(x) <- NULL
}
# Agglomerate the data by using SE method
x <- callNextMethod(x, rank = rank, ...)
return(x)
}
)
#' @rdname agglomerate-methods
#' @importFrom SummarizedExperiment rowData rowData<-
#' @export
setMethod("agglomerateByRank", signature = c(x = "SummarizedExperiment"),
function(x, rank = taxonomyRanks(x)[1], empty.rm = TRUE,
empty.fields = c(NA, "", " ", "\t", "-", "_"), ...){
# Input check
if(nrow(x) == 0L){
stop("No data available in `x` ('x' has nrow(x) == 0L.)",
call. = FALSE)
}
if(!.is_non_empty_string(rank)){
stop("'rank' must be a non-empty single character value",
call. = FALSE)
}
if(!.is_a_bool(empty.rm)){
stop("'empty.rm' must be TRUE or FALSE.", call. = FALSE)
}
if(ncol(rowData(x)) == 0L){
stop("taxonomyData needs to be populated.", call. = FALSE)
}
.check_taxonomic_rank(rank, x)
.check_for_taxonomic_data_order(x)
#
# Get the index of which taxonomy rank is detected and used for
# agglomeration
col_idx <- which( taxonomyRanks(x) %in% rank )
# Get the indices of detected rank columns from rowData
tax_cols <- .get_tax_cols_from_se(x)
# if empty.rm is TRUE, remove those rows that have empty,
# white-space, NA values in rank information. I.e., they do not have
# taxonomy information in specified taxonomy level.
if( empty.rm ){
x <- .remove_with_empty_taxonomic_info(
x, tax_cols[col_idx], empty.fields)
}
# If rank is the only rank that is available and this data is unique,
# then the data is already 'aggregated' and no further operations
# are needed.
if( length(taxonomyRanks(x)) == 1L &&
!anyDuplicated(rowData(x)[,taxonomyRanks(x)]) ){
return(x)
}
# Get groups of taxonomy entries, i.e., get the specified rank
# column from rowData
tax_factors <- .get_tax_groups(x, col = col_idx, ...)
# Convert to factors. Use empty.rm so that NA values are not
# preserved. i.e. they are not converted into character values.
# NA values are handled earlier in this function.
tax_factors <- .norm_f(nrow(x), tax_factors, empty.rm = TRUE)
# Agglomerate data by utilizing agglomerateByVariable
args <- c(list(
x, by = "rows", group = tax_factors, empty.rm = TRUE), list(...))
x <- do.call(agglomerateByVariable, args)
# Replace the values to the right of the rank with NA_character_.
# These columns no longer represent the agglomerated data, as they
# previously corresponded to specific lower taxonomic ranks that are
# now aggregated at the current level.
badcolumns <- tax_cols[seq_along(tax_cols) > col_idx]
if( length(badcolumns) > 0L ){
rowData(x)[, badcolumns] <- NA_character_
}
# Adjust rownames
rownames(x) <- getTaxonomyLabels(
x, empty.fields, with.rank = FALSE, resolve.loops = FALSE, ...)
# Remove those columns from rowData that include only NAs
x <- .remove_NA_cols_from_rowdata(x, ...)
# Add agglomeration info to metadata
x <- .add_values_to_metadata(x, "agglomerated_by_rank", rank)
# Order the data in alphabetical order
x <- x[ order(rownames(x)), ]
return(x)
}
)
#' @rdname agglomerate-methods
#' @aliases agglomerateByVariable
#' @export
setGeneric("agglomerateByVariable", signature = "x", function(x, ...)
standardGeneric("agglomerateByVariable"))
#' @rdname agglomerate-methods
#' @aliases agglomerateByVariable
#' @export
setMethod("agglomerateByVariable",
signature = c(x = "TreeSummarizedExperiment"),
function(x, by, group = f, f, update.tree = mergeTree, mergeTree = FALSE,
...){
# Check by
by <- .check_MARGIN(by)
# Get function based on by
FUN <- switch(by, .merge_rows_TSE, .merge_cols_TSE)
# Agglomerate
x <- FUN(x, group, update.tree = update.tree, ...)
return(x)
}
)
#' @rdname agglomerate-methods
#' @aliases agglomerateByVariable
#' @export
setMethod("agglomerateByVariable", signature = c(x = "SummarizedExperiment"),
function(x, by, group = f, f, ...){
# Check by
by <- .check_MARGIN(by)
# Agglomerate the data
x <- .merge_rows_or_cols(x, group, by, ...)
return(x)
}
)
################################ HELP FUNCTIONS ################################
# This functions subset the data so that rows that do not have taxonomy
# information in specified rank are removed.
.remove_with_empty_taxonomic_info <- function(
x, column, empty.fields = c(NA,""," ","\t","-","_")){
tax <- as.character(rowData(x)[,column])
f <- !(tax %in% empty.fields)
if(any(!f)){
x <- x[f, , drop=FALSE]
}
return(x)
}
# This function removes empty rank columns from rowdata. (Those that include
# only NA values)
.remove_NA_cols_from_rowdata <- function(x, empty.ranks.rm = remove_empty_ranks,
remove_empty_ranks = FALSE, ...){
# Check empty.ranks.rm
if( !.is_a_bool(empty.ranks.rm) ){
stop("'empty.ranks.rm' must be a boolean value.",
call. = FALSE)
}
# If user wants to remove those columns
if( empty.ranks.rm ){
# Get columns that include taxonomy information
rank_cols <- taxonomyRanks(x)
# Get rowData with only taxonomy
rd <- rowData(x)[ , rank_cols, drop = FALSE]
# Remove taxonomy from rowData
rowData(x) <- rowData(x)[
, !colnames(rowData(x)) %in% rank_cols, drop = FALSE]
# Subset data so that it includes only rank columns that include data
non_empty_ranks <- apply(rd, 2, function(x) !all(is.na(x)))
rd <- rd[ , non_empty_ranks, drop = FALSE]
# Adding taxonomy back to SE
rowData(x) <- cbind(rowData(x), rd)
}
return(x)
}
# Order the data so that taxa from tree1 comes first, then taxa
# from tree2...
.order_based_on_trees <- function(x){
# Get rowlinks and unique trees
links <- DataFrame(rowLinks(x))
uniq_trees <- sort(unique(links$whichTree))
# Get row index to the data
links$row_i <- seq_len(nrow(x))
# Calculate, how many rows each tree has, and add it to data
freq <- as.data.frame(table(links$whichTree))
links <- merge(links, freq, all.x = TRUE, all.y = FALSE,
by.x = "whichTree", by.y = "Var1")
# Factorize the names of trees
links$whichTree <- factor(links$whichTree, levels = uniq_trees)
# Order the data back to its original order based on row indices
links <- links[order(links$row_i), ]
# Get the order based on size of tree and name
order <- order(links$whichTree)
# Order the data
x <- x[order, ]
return(x)
}
# Agglomerate all rowTrees found in TreeSE object. Get tips that represent
# rows and remove all others.
#' @importFrom TreeSummarizedExperiment subsetByLeaf
.agglomerate_trees <- function(x, by = 1, ...){
# Get right functions based on direction
tree_names_FUN <- switch(
by, "1" = rowTreeNames, "2" = colTreeNames, stop("."))
links_FUN <- switch(by, "1" = rowLinks, "2" = colLinks, stop("."))
tree_FUN <- switch(by, "1" = rowTree, "2" = colTree, stop("."))
# Get right argument names for subsetByLeaf call
args_names <- switch(
by,
"1" = c("x", "rowLeaf", "whichRowTree", "updateTree"),
"2" = c("x", "colLeaf", "whichColTree", "updateTree"),
stop("."))
# Get names of trees and links between trees and rows
tree_names <- tree_names_FUN(x)
row_links <- links_FUN(x)
# Loop through tree names
for( name in tree_names ){
# Get the tree that is being agglomerated
tree <- tree_FUN(x, name)
# Get row links that corresponds this specific tree
links_temp <- row_links[ row_links[["whichTree"]] == name, ]
# If the tree represents the data, agglomerate it
if( nrow(links_temp) > 0 ){
# Get names of nodes that are preserved
links_temp <- links_temp[["nodeLab"]]
# Agglomerate the tree
args <- list(x, links_temp, name, TRUE)
names(args) <- args_names
x <- do.call(subsetByLeaf, args)
}
}
return(x)
}
# This function trims tips until all tips can be found from provided set of
# nodes
#' @importFrom ape drop.tip has.singles collapse.singles
.prune_tree <- function(tree, nodes, collapse.singles = TRUE, ...){
# Check collapse.singles
if( !.is_a_bool(collapse.singles) ){
stop("'collapse.singles' must be TRUE or FALSE.", call. = FALSE)
}
#
# Get those tips that can not be found from provided nodes
remove_tips <- .get_tips_to_drop(tree, nodes)
# As long as there are tips to be dropped, run the loop
while( length(remove_tips) > 0 ){
# Drop tips that cannot be found. Drop only one layer at the time. Some
# dataset might have taxa that are not in tip layer but they are in
# higher rank. If we delete more than one layer at the time, we might
# loose the node for those taxa. --> The result of pruning is a tree
# whose all tips can be found provided nodes i.e., rows of TreeSE. Some
# taxa might be higher rank meaning that all rows might not be in tips
# even after pruning; these rows have still child-nodes that represent
# other rows.
# Suppress warning: drop all tips of the tree: returning NULL
tree <- tryCatch({
drop.tip(
tree, remove_tips,
trim.internal = FALSE,
collapse.singles = FALSE)
}, warning = function(w) {
# Do nothing on warning
}, error = function(e) {
# Try to prune by also pruning internal nodes. Sometimes that is the
# case; we need to trim also internal nodes in order to prune
# leaf.
drop.tip(
tree, remove_tips,
trim.internal = TRUE,
collapse.singles = FALSE)
})
# If all tips were dropped, the result is NULL --> stop loop
if( is.null(tree) ){
warning("Pruning resulted to empty tree.", call. = FALSE)
break
}
# Again, get those tips of updated tree that cannot be found from
# provided nodes
remove_tips <- .get_tips_to_drop(tree, nodes)
}
# Simplify the tree structure. Remove nodes that have only single
# descendant.
if( !is.null(tree) && length(tree$tip.label) > 1 && has.singles(tree) &&
collapse.singles ){
tree <- collapse.singles(tree)
}
return(tree)
}
# This function gets tree and nodes as input. As output, it gives set of tips
# that are not in the set of nodes provided as input.
.get_tips_to_drop <- function(tree, nodes){
# Get those tips cannot be found from node set
cannot_be_found <- !tree$tip.label %in% nodes
# Get those tips that are duplicated. Single node should match with only
# one row.
dupl <- duplicated(tree$tip.label)
# Get indices of those tips that are going to be removed
tips <- which( cannot_be_found | dupl )
return(tips)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.