# Prepare function input:
data(hdacTR_smallExample)
tpptrData <- suppressMessages(
tpptrImport(configTable = hdacTR_config, data = hdacTR_data)
)
hdacData <- tpptrTidyUpESets(tpptrData, returnType = "exprs") %>%
filter(uniqueID %in% c("HDAC1", "HDAC2", "HDAC9"))
splineFits <- suppressMessages(
tpptrFitSplines(data = hdacData, factorsH1 = "condition", returnModels = TRUE,
splineDF = 2, nCores = 1)
)
test_that(desc="allOk", code={
datIn <- hdacData
fitsIn <- splineFits
outPlot <- TPP:::predict_and_plot_spline_models(dat = datIn, fits = fitsIn)
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
expect_true(check1 & check2)
})
test_that(desc="allOk_H0", code={
datIn <- hdacData
fitsIn <- splineFits %>% filter(testHypothesis == "null")
outPlot <- TPP:::predict_and_plot_spline_models(dat = datIn, fits = fitsIn)
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- length(outPlot$layers) == 2 # to do: the null models should be displayed and a corresponding geom_line layer present
expect_true(check1 & check2 & check3)
})
test_that(desc="allOk_H1", code={
datIn <- hdacData
fitsIn <- splineFits %>% filter(testHypothesis != "null")
outPlot <- TPP:::predict_and_plot_spline_models(dat = datIn, fits = fitsIn)
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- length(outPlot$layers) == 2
expect_true(check1 & check2 & check3)
})
test_that(desc="dataMissing", code={
datIn <- hdacData
fitsIn <- splineFits
expect_error(TPP:::predict_and_plot_spline_models(fits = fitsIn))
})
test_that(desc="modelsMissing", code={
datIn <- hdacData
fitsIn <- splineFits
expect_error(TPP:::predict_and_plot_spline_models(dat = datIn))
})
test_that(desc="modelColMissing", code={
datIn <- hdacData
fitsIn <- splineFits %>% select(-fittedModel)
expect_error(TPP:::predict_and_plot_spline_models(dat = datIn, fits = fitsIn))
})
test_that(desc="modelColInvalid", code={
# If a column with assumed models is given, they are passed on to the
# prediction. Invalid model types are handeled directly by the prediction
# function by returning NA for each value of x.
fitsIn <- splineFits %>% mutate(fittedModel = NA) # Create invalid models
datIn <- hdacData
outPlot <- TPP:::predict_and_plot_spline_models(dat = datIn, fits = fitsIn)
check1 <- inherits(outPlot, "ggplot")
check2 <- all(paste(outPlot$mapping) == c("~x", "~y", "~colorColumn"))
check3 <- length(outPlot$layers) == 1 # to do: the null models should be disyplayed and a corresponding geom_line layer present
expect_true(check1 & check2 & check3)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.