Description Usage Arguments Details Value References Examples
View source: R/tpptrAnalyzeMeltingCurves.R
Compute p-values for the pairwise comparisons of melting curve shifts between different conditions.
1 2 3 4 5 6 | tpptrAnalyzeMeltingCurves(
data,
pValMethod = "robustZ",
pValFilter = list(minR2 = 0.8, maxPlateau = 0.3),
pValParams = list(binWidth = 300)
)
|
data |
list of ExpressionSets containing fold changes and metadata. Their featureData fields contain the fitted melting curve parameters. |
pValMethod |
Method for p-value computation. Currently restricted to 'robustZ' (see Cox & Mann (2008)). |
pValFilter |
optional list of filtering criteria to be applied before p-value computation. |
pValParams |
optional list of parameters for p-value computation. |
The pValParams
argument is a list that can contain optional parameters
for the chosen p-value computation pValMethod
. The following options are
available:
pValMethod = "robustZ"
:
pValParams=list(binWidth=[your_binWidth])
.
A data frame in which the fit results are stored row-wise for each protein.
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature biotechnology, 26(12), 1367-1372.
1 2 3 4 5 6 7 8 9 10 11 12 13 | data(hdacTR_smallExample)
tpptrData <- tpptrImport(hdacTR_config, hdacTR_data)
tpptrNorm <- tpptrNormalize(data=tpptrData,
normReqs=tpptrDefaultNormReqs())
normalizedData <- tpptrNorm$normData
## Not run:
# Fit melting curves to each protein
# (can take some time depending on device used):
fittedData <- tpptrCurveFit(normalizedData, nCores=1)
resultTable <- tpptrAnalyzeMeltingCurves(fittedData)
subset(resultTable, fulfills_all_4_requirements)$Protein_ID
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.