#### TRONCO: a tool for TRanslational ONCOlogy
####
#### Copyright (c) 2015-2017, Marco Antoniotti, Giulio Caravagna, Luca De Sano,
#### Alex Graudenzi, Giancarlo Mauri, Bud Mishra and Daniele Ramazzotti.
####
#### All rights reserved. This program and the accompanying materials
#### are made available under the terms of the GNU GPL v3.0
#### which accompanies this distribution.
# reconstruct the best dag topology running CAPRI algorithm
# @title capri.fit
# @param dataset a dataset describing a progressive phenomenon
# @param hypotheses hypotheses to be considered in the reconstruction
# @param command type of search for the likelihood fit, either hill climbing (hc) or tabu (tabu)
# @param regularization regularizators to be used for the likelihood fit
# @param do.boot should I perform bootstrap? Yes if TRUE, no otherwise
# @param nboot integer number (greater than 0) of bootstrap sampling to be performed
# @param pvalue pvalue for the tests (value between 0 and 1)
# @param min.boot minimum number of bootstrapping to be performed
# @param min.stat should I keep bootstrapping untill I have nboot valid values?
# @param boot.seed seed to be used for the sampling
# @param silent should I be verbose?
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return topology: the reconstructed tree topology
#
capri.fit <- function(dataset,
hypotheses = NA,
command = "hc",
regularization = c("bic", "aic"),
do.boot = TRUE,
nboot = 100,
pvalue = 0.05,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos = 0.0,
eneg = 0.0,
restart = 100) {
## Start the clock to measure the execution time.
ptm = proc.time();
## Structure with the set of valid edges
## I start from the complete graph, i.e., I have no prior and all
## the connections are possibly causal.
adj.matrix = array(1, c(ncol(dataset), ncol(dataset)));
colnames(adj.matrix) = colnames(dataset);
rownames(adj.matrix) = colnames(dataset);
## The diagonal of the adjacency matrix should not be considered,
## i.e., no self cause is allowed.
diag(adj.matrix) = 0;
## Consider any hypothesis.
adj.matrix = hypothesis.adj.matrix(hypotheses, adj.matrix);
## Check if the dataset is valid.
valid.dataset = check.dataset(dataset, adj.matrix, FALSE, epos, eneg)
adj.matrix = valid.dataset$adj.matrix;
invalid.events = valid.dataset$invalid.events;
## Reconstruct the prima facie topology
## Should I perform bootstrap? Yes if TRUE, no otherwise.
if (do.boot == TRUE) {
if (!silent)
cat('*** Bootstraping selective advantage scores (prima facie).\n')
prima.facie.parents =
get.prima.facie.parents.do.boot(dataset,
hypotheses,
nboot,
pvalue,
adj.matrix,
min.boot,
min.stat,
boot.seed,
silent,
epos,
eneg);
} else {
if (!silent)
cat('*** Computing selective advantage scores (prima facie).\n')
prima.facie.parents =
get.prima.facie.parents.no.boot(dataset,
hypotheses,
adj.matrix,
silent,
epos,
eneg);
}
## Add back in any connection invalid for the probability raising
## theory.
if (length(invalid.events) > 0) {
# save the correct acyclic matrix
adj.matrix.cyclic.tp.valid = prima.facie.parents$adj.matrix$adj.matrix.cyclic.tp
adj.matrix.cyclic.valid = prima.facie.parents$adj.matrix$adj.matrix.cyclic
adj.matrix.acyclic.valid = prima.facie.parents$adj.matrix$adj.matrix.acyclic
for (i in 1:nrow(invalid.events)) {
prima.facie.parents$adj.matrix$adj.matrix.cyclic.tp[invalid.events[i, "cause"],invalid.events[i, "effect"]] = 1
prima.facie.parents$adj.matrix$adj.matrix.cyclic[invalid.events[i, "cause"],invalid.events[i, "effect"]] = 1
prima.facie.parents$adj.matrix$adj.matrix.acyclic[invalid.events[i, "cause"],invalid.events[i, "effect"]] = 1
}
# if the new cyclic.tp contains cycles use the previously computed matrix
if (!is.dag(graph.adjacency(prima.facie.parents$adj.matrix$adj.matrix.cyclic.tp))) {
prima.facie.parents$adj.matrix$adj.matrix.cyclic.tp = adj.matrix.cyclic.tp.valid
}
# if the new cyclic contains cycles use the previously computed matrix
if (!is.dag(graph.adjacency(prima.facie.parents$adj.matrix$adj.matrix.cyclic))) {
prima.facie.parents$adj.matrix$adj.matrix.cyclic = adj.matrix.cyclic.valid
}
# if the new acyclic contains cycles use the previously computed matrix
if (!is.dag(graph.adjacency(prima.facie.parents$adj.matrix$adj.matrix.acyclic))) {
prima.facie.parents$adj.matrix$adj.matrix.acyclic = adj.matrix.acyclic.valid
}
}
adj.matrix.prima.facie =
prima.facie.parents$adj.matrix$adj.matrix.acyclic
## Perform the likelihood fit with the required regularization
## scores.
model = list();
for (reg in regularization) {
## Perform the likelihood fit with the chosen regularization
## score on the prima facie topology.
if (!silent)
cat(paste0('*** Performing likelihood-fit with regularization ',reg,'.\n'))
best.parents =
perform.likelihood.fit.capri(dataset,
prima.facie.parents$adj.matrix$adj.matrix.acyclic,
command,
regularization = reg,
restart)
## Set the structure to save the conditional probabilities of
## the reconstructed topology.
reconstructed.model = create.model(dataset,
best.parents,
prima.facie.parents)
model.name = paste('capri', reg, sep='_')
model[[model.name]] = reconstructed.model
}
## Set the execution parameters.
parameters =
list(algorithm = "CAPRI",
command = command,
regularization = regularization,
do.boot = do.boot,
nboot = nboot,
pvalue = pvalue,
min.boot = min.boot,
min.stat = min.stat,
boot.seed = boot.seed,
silent = silent,
error.rates = list(epos=epos,eneg=eneg),
restart = restart)
## Return the results.
topology =
list(dataset = dataset,
hypotheses = hypotheses,
adj.matrix.prima.facie = adj.matrix.prima.facie,
confidence = prima.facie.parents$pf.confidence,
model = model,
parameters = parameters,
execution.time = (proc.time() - ptm))
topology = rename.reconstruction.fields(topology, dataset)
return(topology)
}
# check if the dataset is valid accordingly to the probability raising
# @title check.dataset
# @param dataset a dataset describing a progressive phenomenon
# @param adj.matrix adjacency matrix of the topology
# @param verbose should I print the warnings? Yes if TRUE, no otherwise
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return valid.dataset: a dataset valid accordingly to the probability raising
check.dataset <- function(dataset, adj.matrix, verbose, epos, eneg ) {
## Perform the preprocessing only if I have at least two binary
## events and two samples.
if (length(ncol(dataset)) > 0
&& ncol(dataset) > 1
&& length(nrow(dataset)) > 0
&& nrow(dataset) > 1
&& length(dataset[dataset == 0 | dataset == 1]) == nrow(dataset) * ncol(dataset)) {
## Structure to compute the observed and observed joint
## probabilities.
pair.count <- array(0, dim = c(ncol(dataset), ncol(dataset)));
## Compute the probabilities on the dataset.
for (i in 1:ncol(dataset)) {
for (j in 1:ncol(dataset)) {
val1 = dataset[ ,i];
val2 = dataset[ ,j];
pair.count[i,j] = (t(val1) %*% val2);
}
}
# minimum probability to be represented in the dataset
minimum.prob = 0 #max(.Machine$double.eps,(1/nrow(dataset))/2)
## marginal.probs is an array with the marginal probabilities.
marginal.probs <-
array(as.matrix(diag(pair.count) / nrow(dataset)),
dim = c(ncol(dataset), 1))
## joint.probs is an array with the joint observed probabilities.
joint.probs <- as.matrix(pair.count / nrow(dataset))
# apply the noise model to estimate the theoretical joint.probs
for (p1 in 1:nrow(joint.probs)) {
for (p2 in p1:ncol(joint.probs)) {
estimated.prob = estimate.theoretical.probs(joint.probs[p1,p2],type="joint",prob1=marginal.probs[p1],
prob2=marginal.probs[p2],
min.prob=minimum.prob,epos=epos,eneg=eneg)
joint.probs[p1,p2] = estimated.prob
joint.probs[p2,p1] = estimated.prob
}
}
# apply the noise model to estimate the theoretical marginal.probs
marginal.probs = sapply(marginal.probs,FUN=function(x) { return(estimate.theoretical.probs(x,
type="marginal",min.prob=minimum.prob,
epos=epos,eneg=eneg)) })
marginal.probs = array(marginal.probs, dim = c(length(marginal.probs), 1))
# verify the probabilities to be corret
res.probs = verify.constraints.probs(marginal.probs,joint.probs)
marginal.probs = res.probs$marginal.probs
joint.probs = res.probs$joint.probs
## Evaluate the connections.
invalid.events = vector();
for (i in 1:ncol(adj.matrix)) {
for (j in 1:nrow(adj.matrix)) {
## if i --> j is valid
if (i != j && adj.matrix[i, j] == 1) {
if (marginal.probs[i,1] == 1) {
## the potential cause is always present
adj.matrix[i, j] = 0;
} else if (marginal.probs[i,1] == 0) {
## the potential cause is always missing
adj.matrix[i, j] = 0;
} else if (marginal.probs[j,1] == 1) {
## the potential child is always present
adj.matrix[i, j] = 0;
} else if (marginal.probs[j,1] == 0) {
## the potential child is always missing
adj.matrix[i, j] = 0;
} else if ((joint.probs[i,j] / marginal.probs[i]) == 1
&& (joint.probs[i,j] / marginal.probs[j]) == 1) {
## the two events are equals
adj.matrix[i, j] = 0;
#invalid.events = rbind(invalid.events,t(c(i,j)));
# if we have 2 indistinguishable events both connected to create a cycle
# I choose one direction randomly
# by keeping only the edge from the lower to the higher positioned node
if (i<j) {
invalid.events = rbind(invalid.events,t(c(i,j)))
}
}
}
}
}
if (length(invalid.events) > 0) {
warning("The dataset contains indistinguishable events that are left disconnected in the progression model.\n")
colnames(invalid.events) = c("cause","effect");
}
valid.dataset =
list(dataset = dataset,
adj.matrix = adj.matrix,
invalid.events = invalid.events,
marginal.probs = marginal.probs,
joint.probs = joint.probs);
}
## if the dataset is not valid, we stop here
else {
if (verbose == TRUE) {
warning("The dataset must contain at least two binary events and two samples.");
}
valid.dataset =
list(dataset = NA,
adj.matrix = NA,
invalid.events = NA,
marginal.probs = NA,
joint.probs = NA);
}
return(valid.dataset);
}
# verify the constraints over the probabilities after noise is applied
verify.constraints.probs = function( marginal.probs, joint.probs ) {
for (i in 1:nrow(joint.probs)) {
for (j in i:ncol(joint.probs)) {
if(i!=j) {
max.joint.prob = min(marginal.probs[i,1],marginal.probs[j,1])
if(joint.probs[i,j]>max.joint.prob) {
joint.probs[i,j] = max.joint.prob
joint.probs[j,i] = joint.probs[i,j]
}
}
}
}
res.probs = list(marginal.probs=marginal.probs,joint.probs=joint.probs)
}
# compute a robust estimation of the scores using rejection sampling bootstrap
# @title get.bootstrapped.scores
# @param dataset a valid dataset
# @param nboot number of bootstrap resampling to be performed
# @param adj.matrix adjacency matrix of the initially valid edges
# @param min.boot minimum number of bootstrapping to be performed
# @param min.stat should I keep bootstrapping untill I have nboot valid values?
# @param boot.seed seed to be used for the sampling
# @param silent Should I be verbose?
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return scores: list structure with the scores and the data generated by bootstrap
#
get.bootstrapped.scores <- function(dataset,
nboot,
adj.matrix,
min.boot = 3,
min.stat = TRUE,
boot.seed = NULL,
silent = FALSE,
epos,
eneg) {
## Structures to save the distributions generated by the
## bootstrapped datasets.
marginal.probs.distributions <-
array(list(-1), c(ncol(dataset), 1));
joint.probs.distributions <-
array(list(-1), c(ncol(dataset), ncol(dataset)));
prima.facie.model.distributions <-
array(list(-1), c(ncol(dataset), ncol(dataset)));
prima.facie.null.distributions <-
array(list(-1), c(ncol(dataset), ncol(dataset)));
## Structures to save the number of performed valid (not rejected)
## sampling.
sampled.marginal.probs.distributions <-
array(0, dim = c(ncol(dataset),1));
sampled.joint.probs.distributions <-
array(0, dim = c(ncol(dataset), ncol(dataset)));
sampled.prima.facie.distributions <-
array(0, dim = c(ncol(dataset),ncol(dataset)));
## I require a minimum of min.boot (default = 3) sampling of
## bootstrap.
nboot = max(nboot,min.boot);
## Set not to sample for the invalid edges.
for (i in 1:nrow(adj.matrix)) {
for (j in 1:ncol(adj.matrix)) {
if (adj.matrix[i, j] == 0) {
sampled.prima.facie.distributions[i,j] = nboot;
}
}
}
## Perform bootstrap estimation based on a number of bootstrapped
## (>= nboot) datasets.
###
### START BOOTSTRAP HERE
###
curr.iteration = min(sampled.prima.facie.distributions);
boot.counter = 0;
## Set the seed to be used for the sampling.
set.seed(boot.seed);
#if (silent == FALSE) {
# ## Create a progress bar.
# flush.console();
# pb <- txtProgressBar(curr.iteration, nboot, style = 3);
#}
dot = 0
if (!silent) {
cat('\t')
}
while (curr.iteration<nboot) {
## Define the dataset to be used in this iteration and compute
## the scores on it.
sampled.data =
dataset[sample(1:nrow(dataset),
size = nrow(dataset),
replace = TRUE),
];
boot.counter = boot.counter + 1;
## Compute the scores on the sampled data.
curr.scores = get.dag.scores(sampled.data,adj.matrix,epos,eneg);
curr.marginal.probs = curr.scores$marginal.probs;
curr.joint.probs = curr.scores$joint.probs;
curr.prima.facie.model = curr.scores$prima.facie.model;
curr.prima.facie.null = curr.scores$prima.facie.null;
## Save the (valid) scores for each edge.
for (i in 1:nrow(curr.prima.facie.model)) {
## Get the marginal probabilities from the sampled data.
if (sampled.marginal.probs.distributions[i, 1] == 0) {
sampled.marginal.probs.distributions[i, 1] = 1;
marginal.probs.distributions[i,1] =
curr.marginal.probs[i, 1];
} else {
marginal.probs.distributions[i, 1] =
list(c(unlist(marginal.probs.distributions[i, 1]),
curr.marginal.probs[i, 1]));
}
for (j in 1:ncol(curr.prima.facie.model)) {
## Get the joint probs from the sampled data.
if (sampled.joint.probs.distributions[i, j] == 0) {
sampled.joint.probs.distributions[i, j] = 1;
joint.probs.distributions[i, j] =
curr.joint.probs[i, j];
} else {
joint.probs.distributions[i, j] =
list(c(unlist(joint.probs.distributions[i, j]),
curr.joint.probs[i, j]));
}
## Get the prima facie estimations from the sampled
## data.
if (curr.prima.facie.model[i, j] != -1) {
## Count the valid values per edge.
sampled.prima.facie.distributions[i, j] =
sampled.prima.facie.distributions[i, j] + 1;
## Save the scores.
if (sampled.prima.facie.distributions[i, j] == 1) {
## scores for i --> j
prima.facie.model.distributions[i, j] =
list(curr.prima.facie.model[i, j]);
prima.facie.null.distributions[i, j] =
list(curr.prima.facie.null[i, j]);
} else {
## Scores for i --> j
prima.facie.model.distributions[i, j] =
list(c(unlist(prima.facie.model.distributions[i, j]),
curr.prima.facie.model[i, j]));
prima.facie.null.distributions[i, j] =
list(c(unlist(prima.facie.null.distributions[i, j]),
curr.prima.facie.null[i, j]));
}
}
}
}
## Set the number of performed iterations after the last
## bootstrap sampling.
curr.iteration = min(sampled.prima.facie.distributions);
## If the flag min.stat is FALSE, even if after nboot
## iterations I don't have nboot valid entries, as soon as I
## have at least min.boot values, I stop anyway.
if (min.stat == FALSE
&& boot.counter >= nboot
&& curr.iteration >= min.boot) {
curr.iteration = nboot;
}
#if (silent == FALSE) {
# ## Increment the progress bar.
# if (min.stat == FALSE) {
# setTxtProgressBar(pb, boot.counter);
# } else {
# setTxtProgressBar(pb, curr.iteration);
# }
#}
if (!silent && (curr.iteration %% 5 == 0)) {
cat('.')
dot = dot + 1
if (dot %% 50 == 0) {
cat('\n\t')
}
}
}
#if (silent == FALSE) {
# ## Close the progress bar.
# close(pb);
#}
if (!silent) {
cat('\n')
}
## Save the results and return them.
scores =
list(marginal.probs.distributions = marginal.probs.distributions,
joint.probs.distributions = joint.probs.distributions,
prima.facie.model.distributions = prima.facie.model.distributions,
prima.facie.null.distributions = prima.facie.null.distributions);
return(scores);
}
# compute the observed probabilities and the prima facie scores on the dataset
# @title get.dag.scores
# @param dataset a valid dataset
# @param adj.matrix adjacency matrix of the initially valid edges
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return scores: observed probabilities and prima facie scores
#
get.dag.scores <- function( dataset, adj.matrix, epos, eneg ) {
## Structure to save the prima facie scores.
prima.facie.model <- array(-1, dim = c(ncol(dataset), ncol(dataset)));
prima.facie.null <- array(-1, dim = c(ncol(dataset), ncol(dataset)));
## Structure to save the observed and observed-joint
## probabilities.
pair.count <- array(0, dim = c(ncol(dataset), ncol(dataset)));
## Compute the observed probabilities on the dataset.
for (i in 1:ncol(dataset)) {
for (j in 1:ncol(dataset)) {
val1 = dataset[ ,i];
val2 = dataset[ ,j];
pair.count[i,j] = (t(val1) %*% val2);
}
}
# minimum probability to be represented in the dataset
minimum.prob = 0 #max(.Machine$double.eps,(1/nrow(dataset))/2)
## marginal.probs is an array with the marginal probabilities.
marginal.probs <-
array(as.matrix(diag(pair.count) / nrow(dataset)),
dim = c(ncol(dataset), 1))
## joint.probs is an array with the joint observed probabilities.
joint.probs <- as.matrix(pair.count / nrow(dataset))
# apply the noise model to estimate the theoretical joint.probs
for (p1 in 1:nrow(joint.probs)) {
for (p2 in p1:ncol(joint.probs)) {
estimated.prob = estimate.theoretical.probs(joint.probs[p1,p2],type="joint",prob1=marginal.probs[p1],
prob2=marginal.probs[p2],
min.prob=minimum.prob,epos=epos,eneg=eneg)
joint.probs[p1,p2] = estimated.prob
joint.probs[p2,p1] = estimated.prob
}
}
# apply the noise model to estimate the theoretical marginal.probs
marginal.probs = sapply(marginal.probs,FUN=function(x) { return(estimate.theoretical.probs(x,
type="marginal",min.prob=minimum.prob,
epos=epos,eneg=eneg)) })
marginal.probs = array(marginal.probs, dim = c(length(marginal.probs), 1))
# verify the probabilities to be corret
res.probs = verify.constraints.probs(marginal.probs,joint.probs)
marginal.probs = res.probs$marginal.probs
joint.probs = res.probs$joint.probs
## Compute the prima facie scores based on the probability raising
## model.
for (i in 1:nrow(prima.facie.model)) {
for (j in 1:ncol(prima.facie.model)) {
## The scores are saved in the convention of the adjacency
## matrix, i.e., [i,j] means i is causing j the diagonal
## (self cause) and the other invalid edges have not to be
## considered.
if (adj.matrix[i, j] != 0) {
## Check if the connections from j to i and from i to
## j can be evaluated on this dataset.
if (marginal.probs[i,1] > 0
&& marginal.probs[i,1] < 1
&& marginal.probs[j,1] > 0
&& marginal.probs[j,1] < 1) {
## Check if the two events i and j are
## distinguishable.
if ((joint.probs[i, j] / marginal.probs[j,1]) < 1
|| (joint.probs[i, j] / marginal.probs[i,1]) < 1) {
## prima facie scores of i --> j
prima.facie.model[i, j] =
joint.probs[j, i] / marginal.probs[i,1];
prima.facie.null[i, j] =
(marginal.probs[j,1] - joint.probs[j, i]) / (1 - marginal.probs[i,1]);
}
}
}
}
}
## Save the results and return them.
scores =
list(marginal.probs = marginal.probs,
joint.probs = joint.probs,
prima.facie.model = prima.facie.model,
prima.facie.null = prima.facie.null);
return(scores);
}
# apply the noise model to estimate the either the theoretical marginal or joint probability
estimate.theoretical.probs = function( observed.prob, type, prob1 = NA, prob2 = NA, min.prob = 0, epos, eneg ) {
estimated.prob = NA
# estimate the probability
if(type=="marginal") {
estimated.prob = (observed.prob - epos) / (1 - epos - eneg)
# set a minimum/maximum value for the marginal probabilities in [min.prob,(1-min.prob)]
if(estimated.prob<min.prob) {
estimated.prob = min.prob
}
if(estimated.prob>(1-min.prob)) {
estimated.prob = (1-min.prob)
}
}
else if(type=="joint") {
estimated.prob = (observed.prob - epos * (prob1 + prob2 - epos)) / ((1 - epos - eneg)^2)
# set a minimum/maximum value for the joint probabilities in [0,(1-min.prob)]
if(estimated.prob<0) {
estimated.prob = 0
}
if(estimated.prob>(1-min.prob)) {
estimated.prob = (1-min.prob)
}
}
return(estimated.prob)
}
# select the best set of prima facie causes per node
# @title get.prima.facie.causes.do.boot
# @param adj.matrix adjacency matrix of the initially valid edges
# @param hypotheses hypotheses to be considered
# @param marginal.probs.distributions distributions of the bootstrapped marginal probabilities
# @param prima.facie.model.distributions distributions of the prima facie model
# @param prima.facie.null.distributions distributions of the prima facie null
# @param pvalue minimum pvalue for the Mann-Whitney U tests to be significant
# @param dataset a valid dataset
# @param marginal.probs observed marginal probabilities
# @param joint.probs observed joint probabilities
# @param silent Should I be verbose?
# @return prima.facie.topology: list describing the topology of the prima facie causes
#
get.prima.facie.causes.do.boot <- function(adj.matrix,
hypotheses,
marginal.probs.distributions,
prima.facie.model.distributions,
prima.facie.null.distributions,
pvalue,
dataset,
marginal.probs,
joint.probs,
silent = FALSE) {
## Structure to save the confidence of the edges.
edge.confidence.matrix <- array(list(), c(3, 1));
edge.confidence.matrix[[1,1]] =
array(NA, c(ncol(prima.facie.model.distributions),
ncol(prima.facie.model.distributions)));
edge.confidence.matrix[[2,1]] =
array(NA, c(ncol(prima.facie.model.distributions),
ncol(prima.facie.model.distributions)));
edge.confidence.matrix[[3,1]] =
array(NA, c(ncol(prima.facie.model.distributions),
ncol(prima.facie.model.distributions)));
## Verify Suppes' conditions for prima facie causes;
## i.e., i --> j implies P(i)>P(j) (temporal priority) and
## P(j|i)>P(j|not i) (probability raising).
## Verify the temporal priority condition.
if (!silent)
cat(paste0('\tEvaluating \"temporal priority\" (Wilcoxon, p-value ',
pvalue,
')\n'));
temporal.priority =
verify.temporal.priority.do.boot(marginal.probs.distributions,
pvalue,adj.matrix,
edge.confidence.matrix);
## Verify the probability raising condition.
if (!silent)
cat(paste0('\tEvaluating \"probability raising\" (Wilcoxon, p-value ',
pvalue,
')\n'));
probability.raising =
verify.probability.raising.do.boot(prima.facie.model.distributions,
prima.facie.null.distributions,
pvalue,temporal.priority$adj.matrix,temporal.priority$edge.confidence.matrix);
## Perform the hypergeometric test for each pair of events.
for (i in 1:ncol(adj.matrix)) {
for (j in i:nrow(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered.
if (adj.matrix[i, j] != 0 || adj.matrix[j, i] != 0) {
## Compute the confidence by hypergeometric test for
## both j --> i and i --> j.
probability.raising$edge.confidence.matrix[[3, 1]][i, j] =
phyper(joint.probs[i, j] * nrow(dataset),
marginal.probs[i] * nrow(dataset),
nrow(dataset) - marginal.probs[i] * nrow(dataset),
marginal.probs[j] * nrow(dataset),
lower.tail = FALSE);
probability.raising$edge.confidence.matrix[[3, 1]][j, i] =
probability.raising$edge.confidence.matrix[[3, 1]][i, j];
} else {
probability.raising$edge.confidence.matrix[[3, 1]][i, j] = 1;
probability.raising$edge.confidence.matrix[[3, 1]][j, i] = 1;
}
}
}
## Remove any cycle.
adj.matrix.cyclic = probability.raising$adj.matrix
if (length(temporal.priority$not.ordered) > 0
|| !is.na(hypotheses[1])) {
if (!silent)
cat('*** Loop detection found loops to break.\n')
weights.temporal.priority =
probability.raising$edge.confidence.matrix[[1, 1]] +
probability.raising$edge.confidence.matrix[[2, 1]];
weights.matrix =
probability.raising$edge.confidence.matrix[[2, 1]] +
probability.raising$edge.confidence.matrix[[3, 1]];
acyclic.topology =
remove.cycles(probability.raising$adj.matrix,
weights.temporal.priority,
weights.matrix,
temporal.priority$not.ordered,
hypotheses,
silent);
adj.matrix.acyclic = acyclic.topology$adj.matrix;
} else {
adj.matrix.acyclic = probability.raising$adj.matrix;
}
adj.matrix =
list(adj.matrix.cyclic.tp = temporal.priority$adj.matrix,
adj.matrix.cyclic = adj.matrix.cyclic,
adj.matrix.acyclic = adj.matrix.acyclic)
## Save the results and return them.
prima.facie.topology =
list(adj.matrix = adj.matrix,
edge.confidence.matrix = probability.raising$edge.confidence.matrix);
return(prima.facie.topology);
}
# select the best set of prima facie causes per node without bootstrap
# @title get.prima.facie.causes.no.boot
# @param adj.matrix adjacency matrix of the initially valid edges
# @param hypotheses hypotheses object related to adjacency matrix
# @param marginal.probs observed marginal probabilities
# @param prima.facie.model prima facie model
# @param prima.facie.null prima facie null
# @param dataset a valid dataset
# @param joint.probs observed joint probabilities
# @param silent Should I be verbose?
# @return prima.facie.topology: adjacency matrix of the prima facie causes
#
get.prima.facie.causes.no.boot <- function(adj.matrix,
hypotheses,
marginal.probs,
prima.facie.model,
prima.facie.null,
dataset,
joint.probs,
silent = FALSE) {
## Structure to save the confidence of the edges.
edge.confidence.matrix <- array(list(), c(3, 1));
edge.confidence.matrix[[1, 1]] = array(NA, c(ncol(adj.matrix), ncol(adj.matrix)));
edge.confidence.matrix[[2, 1]] = array(NA, c(ncol(adj.matrix), ncol(adj.matrix)));
edge.confidence.matrix[[3, 1]] = array(NA, c(ncol(adj.matrix), ncol(adj.matrix)));
## Verify Suppes' conditions for prima facie causes;
## i.e., i --> j implies P(i)>P(j) (temporal priority) and
## P(j|i)>P(j|not i) (probability raising).
## Verify the temporal priority condition.
if (!silent)
cat(paste0('\tEvaluating \"temporal priority\".\n'));
temporal.priority =
verify.temporal.priority.no.boot(marginal.probs,
adj.matrix,
edge.confidence.matrix);
## Verify the probability raising condition.
if (!silent)
cat(paste0('\tEvaluating \"probability raising\".\n'));
probability.raising =
verify.probability.raising.no.boot(prima.facie.model,
prima.facie.null,
temporal.priority$adj.matrix,temporal.priority$edge.confidence.matrix);
## Perform the hypergeometric test for each pair of events.
for (i in 1:ncol(adj.matrix)) {
for (j in i:nrow(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered.
if (adj.matrix[i, j] != 0
|| adj.matrix[j, i] != 0) {
## Compute the confidence by hypergeometric test for
## both j --> i and i --> j.
probability.raising$edge.confidence.matrix[[3, 1]][i, j] =
phyper(joint.probs[i,j] * nrow(dataset),
marginal.probs[i] * nrow(dataset),
nrow(dataset) - marginal.probs[i] * nrow(dataset),
marginal.probs[j] * nrow(dataset),lower.tail = FALSE);
probability.raising$edge.confidence.matrix[[3, 1]][j, i] =
probability.raising$edge.confidence.matrix[[3,1]][i,j];
} else {
probability.raising$edge.confidence.matrix[[3, 1]][i, j] = 1;
probability.raising$edge.confidence.matrix[[3, 1]][j, i] = 1;
}
}
}
## Remove any cycle.
adj.matrix.cyclic = probability.raising$adj.matrix
if (length(temporal.priority$not.ordered) > 0
|| !is.na(hypotheses[1])) {
if (!silent)
cat('*** Loop detection found loops to break.\n')
weights.temporal.priority =
probability.raising$edge.confidence.matrix[[2, 1]];
weights.matrix =
probability.raising$edge.confidence.matrix[[2, 1]] +
probability.raising$edge.confidence.matrix[[3, 1]];
acyclic.topology =
remove.cycles(probability.raising$adj.matrix,
weights.temporal.priority,
weights.matrix,
temporal.priority$not.ordered,
hypotheses,
silent);
adj.matrix.acyclic = acyclic.topology$adj.matrix;
} else {
adj.matrix.acyclic = probability.raising$adj.matrix;
}
adj.matrix =
list(adj.matrix.cyclic.tp = temporal.priority$adj.matrix,
adj.matrix.cyclic = adj.matrix.cyclic,
adj.matrix.acyclic = adj.matrix.acyclic)
## Save the results and return them.
prima.facie.topology <-
list(adj.matrix = adj.matrix,
edge.confidence.matrix = probability.raising$edge.confidence.matrix);
return(prima.facie.topology);
}
# select the set of the prima facie parents (with bootstrap) for each node
# based on Suppes' definition of causation
# @title get.prima.facie.parents.do.boot
# @param dataset a valid dataset
# @param hypotheses hypotheses object related to dataset
# @param nboot integer number (greater than 0) of bootstrap sampling to be performed
# @param pvalue pvalue for the tests (value between 0 and 1)
# @param adj.matrix adjacency matrix of the initially valid edges
# @param min.boot minimum number of bootstrapping to be performed
# @param min.stat should I keep bootstrapping untill I have nboot valid values?
# @param boot.seed seed to be used for the sampling
# @param silent Should I be verbose?
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return prima.facie.parents list of the set (if any) of prima facie parents for each node
#
get.prima.facie.parents.do.boot <- function(dataset,
hypotheses,
nboot,
pvalue,
adj.matrix,
min.boot,
min.stat,
boot.seed,
silent,
epos,
eneg ) {
## Perform a robust estimation of the scores using rejection
## sampling bootstrap.
scores =
get.bootstrapped.scores(dataset,
nboot,
adj.matrix,
min.boot,
min.stat,
boot.seed,
silent,
epos,
eneg);
## Compute the observed and joint probabilities as the mean of the
## bootstrapped values.
marginal.probs = array(-1, dim = c(ncol(dataset), 1));
joint.probs = array(-1, dim = c(ncol(dataset), ncol(dataset)));
for (i in 1:ncol(dataset)) {
marginal.probs[i, 1] =
mean(unlist(scores$marginal.probs.distributions[i, 1]));
for (j in i:ncol(dataset)) {
joint.probs[i,j] =
mean(unlist(scores$joint.probs.distributions[i, j]));
if (i != j) {
joint.probs[j, i] = joint.probs[i, j];
}
}
}
## Remove all the edges not representing a prima facie cause.
prima.facie.topology =
get.prima.facie.causes.do.boot(adj.matrix,
hypotheses,
scores$marginal.probs.distributions,
scores$prima.facie.model.distributions,
scores$prima.facie.null.distributions,
pvalue,
dataset,
marginal.probs,joint.probs,
silent);
# remove from adj.matrix.cyclic.tp any edge between events where P(i,j) = 0
for (i in 1:nrow(prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp)) {
for (j in i:ncol(prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp)) {
if(joint.probs[i,j] == 0) {
prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp[i,j] = 0
prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp[j,i] = 0
}
}
}
## Save the results and return them.
prima.facie.parents <-
list(marginal.probs = marginal.probs,
joint.probs = joint.probs,
adj.matrix = prima.facie.topology$adj.matrix,
pf.confidence = prima.facie.topology$edge.confidence.matrix);
return(prima.facie.parents);
}
# select the set of the prima facie parents (without bootstrap) for each node based on Suppes' definition of causation
# @title get.prima.facie.parents.no.boot
# @param dataset a valid dataset
# @param hypotheses hypotheses object associated to dataset
# @param adj.matrix adjacency matrix of the initially valid edges
# @param silent Should I be verbose?
# @param epos error rate of false positive errors
# @param eneg error rate of false negative errors
# @return prima.facie.parents: list of the set (if any) of prima facie parents for each node
#
get.prima.facie.parents.no.boot <- function(dataset,
hypotheses,
adj.matrix,
silent,
epos,
eneg) {
## Compute the scores from the dataset.
scores = get.dag.scores(dataset,adj.matrix,epos,eneg);
## Remove all the edges not representing a prima facie causes.
prima.facie.topology =
get.prima.facie.causes.no.boot(adj.matrix,
hypotheses,
scores$marginal.probs,
scores$prima.facie.model,
scores$prima.facie.null,
dataset,
scores$joint.probs,
silent);
# remove from adj.matrix.cyclic.tp any edge between events where P(i,j) = 0
for (i in 1:nrow(prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp)) {
for (j in i:ncol(prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp)) {
if(scores$joint.probs[i,j] == 0) {
prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp[i,j] = 0
prima.facie.topology$adj.matrix$adj.matrix.cyclic.tp[j,i] = 0
}
}
}
## Save the results return them.
prima.facie.parents <-
list(marginal.probs = scores$marginal.probs,
joint.probs = scores$joint.probs,
adj.matrix = prima.facie.topology$adj.matrix,
pf.confidence = prima.facie.topology$edge.confidence.matrix);
return(prima.facie.parents);
}
# reconstruct the best causal topology by likelihood fit
# @title perform.likelihood.fit.capri
# @param dataset a valid dataset
# @param adj.matrix the adjacency matrix of the prima facie causes
# @param command type of search, either hill climbing (hc) or tabu (tabu)
# @param regularization regularization term to be used in the likelihood fit
# @return topology: the adjacency matrix of both the prima facie and causal topologies
#
perform.likelihood.fit.capri <- function(dataset,
adj.matrix,
command,
regularization,
restart) {
## Adjacency matrix of the topology reconstructed by likelihood
## fit.
adj.matrix.fit = array(0, c(nrow(adj.matrix), ncol(adj.matrix)))
rownames(adj.matrix.fit) = colnames(dataset)
colnames(adj.matrix.fit) = colnames(dataset)
## Create a categorical data frame from the dataset.
data = as.categorical.dataset(dataset)
# Perform the likelihood fit
adj.matrix.fit = lregfit(data,
adj.matrix,
adj.matrix.fit,
regularization,
command,
restart)
## Save the results and return them.
adj.matrix =
list(adj.matrix.pf = adj.matrix,
adj.matrix.fit = adj.matrix.fit);
topology = list(adj.matrix = adj.matrix);
return(topology);
}
# remove any cycle from a given cyclic topology
# @title remove.cycles
# @param adj.matrix adjacency matrix of the topology
# @param weights.temporal.priority weighted matrix to be used to remove the cycles involving atomic events
# @param weights.matrix weighted matrix to be used to remove the cycles involving hypotheses
# @param not.ordered list of the nodes to be orderd
# @param hypotheses hypotheses to evaluate potential cycles
# @param silent Should I be verbose?
# @return acyclic.topology: structure representing the best acyclic topology
#
remove.cycles <- function(adj.matrix,
weights.temporal.priority,
weights.matrix,
not.ordered,
hypotheses = NA,
silent) {
total.edges = length(which(adj.matrix == 1))
removed = 0
## Evaluate the possible cycles involving atomic events.
if (length(not.ordered) > 0) {
## Consider only the edges that were not ordered by temporal
## priority.
curr.edge.pos = 0;
for (i in 1:length(not.ordered)) {
## Consider the events i and j.
curr.edge = not.ordered[[i]]
curr.edge.i = curr.edge[1, 1]
curr.edge.j = curr.edge[2, 1]
## check if i and j still create a cycle.
if (adj.matrix[curr.edge.i, curr.edge.j] == 1
&& adj.matrix[curr.edge.j, curr.edge.i] == 1) {
## Get the scores of the two edges.
curr.score.i.j =
weights.temporal.priority[curr.edge.i, curr.edge.j]
curr.score.j.i =
weights.temporal.priority[curr.edge.j, curr.edge.i]
## Choose an edge based on the score.
if (curr.score.i.j < curr.score.j.i) {
## if i --> j is more confident (lower score) then
## j --> i
removed = removed + 1
adj.matrix[curr.edge.j, curr.edge.i] = 0
} else {
## otherwise
removed = removed + 1
adj.matrix[curr.edge.i, curr.edge.j] = 0
}
}
}
}
## Create the structures where to save the weights in increasing
## order of confidence.
ordered.weights <- vector();
ordered.edges <- list();
## Select the edges to be evaluated during
## the loop removal.
curr.edge.pos = 0;
for (i in 1:nrow(adj.matrix)) {
for (j in 1:nrow(adj.matrix)) {
if (adj.matrix[i, j] == 1) {
ordered.weights =
rbind(ordered.weights, weights.matrix[i, j]);
curr.edge.pos = curr.edge.pos + 1;
new.edge <- array(0, c(2, 1));
new.edge[1, 1] = i;
new.edge[2, 1] = j;
ordered.edges[curr.edge.pos] = list(new.edge);
}
}
}
## Sort the edges in increasing order of confidence (i.e. the
## edges with lower pvalue are the most confident).
ordered.weights = sort(unlist(ordered.weights),
decreasing = TRUE,
index.return = TRUE)
ordered.edges = ordered.edges[ordered.weights$ix]
## Consider the patterns related the hypotheses.
consider.hypotheses = FALSE
if (!is.na(hypotheses[1])) {
consider.hypotheses = TRUE
}
## Visit the ordered edges and remove the ones that are causing
## any cycle.
if (length(ordered.edges) > 0) {
## Expanded matrix to be considered in removing the loops
## if hypotheses are present.
if (consider.hypotheses) {
expansion = hypotheses.expansion(input_matrix = adj.matrix,
map=hypotheses$hstructure,
expand = TRUE,
skip.disconnected = FALSE)
curr.adj.matrix = expansion[[1]]
hypos.new.name = expansion[[2]]
} else {
curr.adj.matrix = adj.matrix
}
for (i in 1:length(ordered.edges)) {
## Consider the edge i-->j
curr.edge = ordered.edges[[i]]
curr.edge.i = curr.edge[1,1]
curr.edge.j = curr.edge[2,1]
## Resolve the mapping from the adj.matrix to the expanded
## one both for curr.edge.i and curr.edge.j
if (consider.hypotheses && colnames(adj.matrix)[curr.edge.i] %in% hypos.new.name) {
curr.edge.i.exp = which(colnames(curr.adj.matrix) %in% names(hypos.new.name)[
which(hypos.new.name %in% colnames(adj.matrix)[curr.edge.i])
])
} else {
curr.edge.i.exp = which(
colnames(curr.adj.matrix) %in% colnames(adj.matrix)[curr.edge.i]
)
}
if (consider.hypotheses && colnames(adj.matrix)[curr.edge.j] %in% hypos.new.name) {
curr.edge.j.exp = which(colnames(curr.adj.matrix) %in% names(hypos.new.name)[
which(hypos.new.name %in% colnames(adj.matrix)[curr.edge.j])
])
} else {
curr.edge.j.exp = which(
colnames(curr.adj.matrix) %in% colnames(adj.matrix)[curr.edge.j]
)
}
## Search for loops between curr.edge.i and curr.edge.j
curr.graph = graph.adjacency(curr.adj.matrix, mode = "directed")
is.path = suppressWarnings(get.shortest.paths(curr.graph,
curr.edge.j.exp,
curr.edge.i.exp)$vpath)
is.path = length(unlist(is.path))
## If there is a path between the two nodes, remove edge i --> j
if (is.path > 0) {
removed = removed + 1
## cat("Removing edge ",colnames(adj.matrix)[curr.edge.i]," to ",colnames(adj.matrix)[curr.edge.j],"\n");
curr.adj.matrix[curr.edge.i.exp, curr.edge.j.exp] = 0
adj.matrix[curr.edge.i, curr.edge.j] = 0
}
}
if (!silent)
cat(paste0('\tRemoved ',
removed,
' edges out of ',
total.edges,
' (',
round(100 * removed/total.edges, 0),
'%)\n'))
}
## Save the results and return them.
acyclic.topology = list(adj.matrix = adj.matrix)
return(acyclic.topology)
}
# verify the probability raising condition
# @title verify.probability.raising.do.boot
# @param prima.facie.model.distributions distributions of the prima facie model
# @param prima.facie.null.distributions distributions of the prima facie null
# @param pvalue minimum pvalue for the Mann-Whitney U tests to be significant
# @param adj.matrix adjacency matrix of the topology
# @param edge.confidence.matrix matrix of the confidence of each edge
# @return probability.raising: list describing the causes where probability raising is verified
#
verify.probability.raising.do.boot <- function(prima.facie.model.distributions,
prima.facie.null.distributions,
pvalue,
adj.matrix,
edge.confidence.matrix) {
## Evaluate the probability raising condition.
for (i in 1:nrow(adj.matrix)) {
for (j in i:ncol(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered.
if (adj.matrix[i, j] != 0
|| adj.matrix[j, i] != 0) {
## pvalue for the probability raising condition for i --> j
second.pvalue.i.j = suppressWarnings(
wilcox.test(unlist(prima.facie.model.distributions[i, j]),
unlist(prima.facie.null.distributions[i,j]),
alternative = "greater",
mu = 0))$p.value;
if (is.na(second.pvalue.i.j)
|| is.nan(second.pvalue.i.j)) {
## In this case the two distributions are exactly
## identical.
second.pvalue.i.j = 1;
}
## In this case i --> j is not valid
if (second.pvalue.i.j >= pvalue) {
adj.matrix[i, j] = 0;
}
## pvalue for the probability raising condition for j --> i
second.pvalue.j.i = suppressWarnings(
wilcox.test(unlist(prima.facie.model.distributions[j, i]),
unlist(prima.facie.null.distributions[j,i]),
alternative = "greater", mu = 0))$p.value;
if (is.na(second.pvalue.j.i)
|| is.nan(second.pvalue.j.i)) {
## In this case the two distributions are exactly
## identical.
second.pvalue.j.i = 1;
}
## In this case j --> i is not valid
if (second.pvalue.j.i >= pvalue) {
adj.matrix[j, i] = 0;
}
## Save the confidence for i--> j and j --> i
tmp = edge.confidence.matrix[[2, 1]];
tmp[i, j] = second.pvalue.i.j;
tmp[j, i] = second.pvalue.j.i;
edge.confidence.matrix[2, 1] = list(tmp);
} else {
tmp = edge.confidence.matrix[[2, 1]];
tmp[i, j] = 1;
tmp[j, i] = 1;
edge.confidence.matrix[2, 1] = list(tmp);
}
}
}
## Save the results and return them.
probability.raising <-
list(adj.matrix = adj.matrix,
edge.confidence.matrix = edge.confidence.matrix);
return(probability.raising);
}
# verify the probability raising condition without bootstrap
# @title verify.probability.raising.no.boot
# @param prima.facie.model prima facie model
# @param prima.facie.null prima facie null
# @param adj.matrix adjacency matrix of the topology
# @param edge.confidence.matrix matrix of the confidence of each edge
# @return probability.raising: adjacency matrix where temporal priority is verified
verify.probability.raising.no.boot <- function(prima.facie.model,
prima.facie.null,
adj.matrix,
edge.confidence.matrix) {
## Evaluate the probability raising condition.
for (i in 1:nrow(adj.matrix)) {
for (j in i:ncol(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered probability raising
## condition: if P(j|i)>P(j|not i) the edge i --> j is
## valid for probability raising.
if (adj.matrix[i, j] != 0
|| adj.matrix[j, i] != 0) {
## In this case i --> j is not valid
if (prima.facie.model[i, j] <= prima.facie.null[i, j]) {
adj.matrix[i, j] = 0;
}
## In this case j --> i is not valid
if (prima.facie.model[j, i] <= prima.facie.null[j, i]) {
adj.matrix[j, i] = 0;
}
## Save the confidence for i-->j and j --> i
tmp = edge.confidence.matrix[[2, 1]];
tmp[i, j] = min(prima.facie.null[i, j] / prima.facie.model[i, j],1);
tmp[j, i] = min(prima.facie.null[j, i] / prima.facie.model[j, i],1);
edge.confidence.matrix[2, 1] = list(tmp);
} else {
tmp = edge.confidence.matrix[[2, 1]];
tmp[i, j] = 1;
tmp[j, i] = 1;
edge.confidence.matrix[2, 1] = list(tmp);
}
}
}
## Save the results and return them.
probability.raising <-
list(adj.matrix = adj.matrix,
edge.confidence.matrix = edge.confidence.matrix);
return(probability.raising);
}
# verify the temporal priority condition with bootstrap
# @title verify.temporal.priority.do.boot
# @param marginal.probs.distributions distributions of the bootstrapped marginal probabilities
# @param pvalue minimum pvalue for the Mann-Whitney U tests to be significant
# @param adj.matrix adjacency matrix of the topology
# @param edge.confidence.matrix matrix of the confidence of each edge
# @return temporal.priority: list describing the causes where temporal priority is verified
#
verify.temporal.priority.do.boot <- function(marginal.probs.distributions,
pvalue,
adj.matrix,
edge.confidence.matrix) {
## Evalutate the temporal priority condition for each pair of
## edges.
not.ordered = list();
counter = 0;
for (i in 1:nrow(adj.matrix)) {
for (j in i:ncol(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered.
if (adj.matrix[i, j] != 0
|| adj.matrix[j, i] != 0) {
## [i,j] refers to causation i --> j
## Temporal priority condition: if P(i) > P(j) the edge
## i --> j is valid for temporal priority.
## Test i --> j
first.pvalue.i.j = suppressWarnings(
wilcox.test(unlist(marginal.probs.distributions[i, 1]),
unlist(marginal.probs.distributions[j, 1]),
alternative = "greater",
mu = 0))$p.value;
if (is.na(first.pvalue.i.j)
|| is.nan(first.pvalue.i.j)) {
## In this case the two distributions are exactly
## identical.
first.pvalue.i.j = 1;
}
## Test j --> i
first.pvalue.j.i = suppressWarnings(
wilcox.test(unlist(marginal.probs.distributions[j, 1]),
unlist(marginal.probs.distributions[i, 1]),
alternative = "greater",
mu = 0))$p.value;
if (is.na(first.pvalue.j.i)
|| is.nan(first.pvalue.j.i)) {
## In this case the two distributions are exactly
## identical.
first.pvalue.j.i = 1;
}
## In this case i is before j and j --> i is not valid.
if (first.pvalue.j.i >= pvalue
&& first.pvalue.i.j < pvalue) {
## [j,i] = 0 means j is after i, i.e. it can not be causing i
adj.matrix[j,i] = 0;
}
## In this case j is before i and i --> j is not valid.
else if (first.pvalue.j.i < pvalue
&& first.pvalue.i.j >= pvalue) {
## [i,j] = 0 means i is after j, i.e. it can not be causing j
adj.matrix[i,j] = 0;
}
## In this case, a total time order between i and j
## can not be defined.
else {
## No temporal priority induced by the topology
## can be inferred.
counter = counter + 1;
curr.not.ordered = array(-1, c(2, 1));
curr.not.ordered[1, 1] = i;
curr.not.ordered[2, 1] = j;
not.ordered[counter] = list(curr.not.ordered);
}
## Save the confidence for i --> j and j --> i
tmp = edge.confidence.matrix[[1, 1]];
tmp[i, j] = first.pvalue.i.j;
tmp[j, i] = first.pvalue.j.i;
edge.confidence.matrix[1, 1] = list(tmp);
} else {
tmp = edge.confidence.matrix[[1, 1]];
tmp[i, j] = 1;
tmp[j, i] = 1;
edge.confidence.matrix[1, 1] = list(tmp);
}
}
}
## Save the results and return them.
temporal.priority <-
list(adj.matrix = adj.matrix,
edge.confidence.matrix = edge.confidence.matrix,
not.ordered = not.ordered);
return(temporal.priority);
}
# verify the temporal priority condition without bootstrap
# @title verify.temporal.priority.no.boot
# @param marginal.probs marginal probabilities
# @param adj.matrix adjacency matrix of the topology
# @param edge.confidence.matrix matrix of the confidence of each edge
# @return temporal.priority: adjacency matrix where temporal priority is verified
#
verify.temporal.priority.no.boot <- function(marginal.probs,
adj.matrix,
edge.confidence.matrix) {
## Evalutate the temporal priority condition for each pair of
## edges.
not.ordered = list();
counter = 0;
for (i in 1:nrow(adj.matrix)) {
for (j in i:ncol(adj.matrix)) {
## The diagonal (self cause) and the other invalid edges
## have not to be considered.
if (adj.matrix[i,j] != 0
|| adj.matrix[j, i] != 0) {
## [i,j] refers to causation i --> j
## Temporal priority condition: if P(i)>P(j) the edge
## i --> j is valid for temporal priority in this case
## i is before j and j --> i is not valid.
if (marginal.probs[i, 1] > marginal.probs[j, 1]) {
## [j,i] = 0 means j is after i, i.e. it can not be causing i
adj.matrix[j, i] = 0;
}
## In this case j is before i and i --> j is not valid
else if (marginal.probs[j, 1] > marginal.probs[i, 1]) {
## [i,j] = 0 means i is after j, i.e. it can not be causing j
adj.matrix[i,j] = 0;
}
## In this case, a total time order between i and j
## can not be defined.
else {
## No temporal priority induced by the topology
## can be inferred.
counter = counter + 1;
curr.not.ordered = array(-1, c(2, 1));
curr.not.ordered[1, 1] = i;
curr.not.ordered[2, 1] = j;
not.ordered[counter] = list(curr.not.ordered);
}
## Save the confidence for i --> j and j --> i
tmp = edge.confidence.matrix[[1, 1]];
tmp[i, j] = min(marginal.probs[j, 1] / marginal.probs[i, 1], 1);
tmp[j, i] = min(marginal.probs[i,1]/marginal.probs[j,1],1);
edge.confidence.matrix[1, 1] = list(tmp);
} else {
tmp = edge.confidence.matrix[[1, 1]];
tmp[i, j] = 1;
tmp[j, i] = 1;
edge.confidence.matrix[1, 1] = list(tmp);
}
}
}
## Save the results and return them.
temporal.priority <-
list(adj.matrix = adj.matrix,
edge.confidence.matrix = edge.confidence.matrix,
not.ordered = not.ordered);
return(temporal.priority);
}
#### end of file -- capri.algorithm.R
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.