#### TRONCO: a tool for TRanslational ONCOlogy
####
#### Copyright (c) 2015-2017, Marco Antoniotti, Giulio Caravagna, Luca De Sano,
#### Alex Graudenzi, Giancarlo Mauri, Bud Mishra and Daniele Ramazzotti.
####
#### All rights reserved. This program and the accompanying materials
#### are made available under the terms of the GNU GPL v3.0
#### which accompanies this distribution.
# perform the likelihood fit
lregfit <- function(data,
adj.matrix,
adj.matrix.fit,
regularization,
command,
restart = 0){
if (regularization == "no_reg") {
return(adj.matrix)
}
## Create the blacklist based on the prima facie topology
## and the tree-structure assumption
cont = 0
parent = -1
child = -1
for (i in rownames(adj.matrix)) {
for (j in colnames(adj.matrix)) {
if(i != j) {
if (adj.matrix[i,j] == 0) {
# [i,j] refers to causation i --> j
cont = cont + 1
if (cont == 1) {
parent = i
child = j
} else {
parent = c(parent, i)
child = c(child, j)
}
}
}
}
}
## perform the reconstruction by likelihood fit with regularization
## either the hill climbing or the tabu search is used as the
## mathematical optimization technique
if (cont > 0) {
blacklist = data.frame(from = parent,to = child)
if (command == "hc") {
my.net = hc(data,score = regularization, blacklist = blacklist, restart = restart)
} else if (command == "tabu") {
my.net = tabu(data,score = regularization, blacklist = blacklist)
}
} else {
if (command == "hc") {
my.net = hc(data, score = regularization, restart = restart)
} else if (command == "tabu") {
my.net = tabu(data, score = regularization)
}
}
my.arcs = my.net$arcs
## build the adjacency matrix of the reconstructed topology
if (length(nrow(my.arcs)) > 0 && nrow(my.arcs) > 0) {
for (i in 1:nrow(my.arcs)) {
# [i,j] refers to causation i --> j
adj.matrix.fit[my.arcs[i,1], my.arcs[i,2]] = 1
}
}
return(adj.matrix.fit)
}
#### end of file -- lregfit.R
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.