Description Details Author(s) See Also Examples
SMITE provides a method of scoring and visualizing multi-level epigenomic data in order to prioritize genes within a genome-wide experiment. These scores can then be used to identify subnetworks within an interaction network called modules. Each module represents a collection of highly interacting genes that are implicated by the experiment.
Package: | SMITE |
Type: | Package |
Version: | 1.0.0 |
Date: | 2015-07-06 |
License: | GPL (>=2) |
Neil Ari Wijetunga, Andrew Damon Johnston
Maintainer: Neil.Wijetunga@med.einstein.yu.edu, Andrew.Johnston@med.einstein.yu.edu
FEM BioNet
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | ## NOTE: commented out for example. See vignette for better explanation ##
options(stringsAsFactors=FALSE)
data(methylationdata)
methylation <- methylation[-which(is.na(methylation[, 5])), ]
methylation[,5] <- replace(methylation[,5],methylation[,5] == 0,
min(subset(methylation[,5], methylation[,5]!=0), na.rm=TRUE))
data(curated_expressiondata)
data(hg19_genes_bed)
data(histone_h3k4me1)
#test_annotation<-makePvalueAnnotation( data=hg19_genes,
#other_data=list(h3k4me1=h3k4me1), gene_name_col=5, other_tss_distance=5000)
##fill in expression data
#test_annotation<-annotateExpression(test_annotation, expression_curated)
##fill in methylation data
#test_annotation<-annotateModification(test_annotation, methylation,
#weight_by=c(promoter="distance", body="distance", h3k4me1="distance"),
#verbose=TRUE, mod_corr=TRUE)
##create a pvalue object that will count the effect of the h3k4me1 as
##bidirectional
#test_annotation<-makePvalueObject(test_annotation,
#effect_directions=c(methylation_promoter="decrease",
#methylation_body="decrease",
#methylation_h3k4me1="bidirectional"))
##normalize the pvalues compared to colExp
#test_annotation<-normalizePval(test_annotation,ref="expression_pvalue",
#method="rescale")
##score with all four features contributing
#test_annotation<-SMITEscorePval(test_annotation,
#weights=c(methylation_promoter=.3,methylation_body=.1,expression=.3,
#methylation_h3k4me1=.3))
##load REACTOME
#load(system.file("data","Reactome.Symbol.Igraph.rda", package="SMITE"))
##run Spinglass using REACTOME network
#test_annotation<-runSpinglass(test_annotation, REACTOME, maxsize=50,
#num_iterations=10)
##run goseq on individual modules to determine bias
#test_annotation <- runGOseq(test_annotation,
#coverage=read.table(system.file("extdata",
#"hg19_symbol_hpaii.sites.inbodyand2kbupstream.bed.gz", package="SMITE")),
#type="kegg")
##search go seq output for keywords
#searchGOseq(test_annotation, "Cell")
##Draw a network
#plotModule(test_annotation, which_network=6, layout="fr")
##sample final file ##
data(test_annotation_score_data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.