Nothing
# branch and bound
getOrder <- function(x) {
label <- names(x)
dm <- as.matrix(dist.hamming(x, FALSE))
ind <- as.vector(which(dm == max(dm), arr.ind = TRUE)[1, ])
nTips <- as.integer(length(label))
added <- ind
remaining <- c(1:nTips)[-ind]
tree <- structure(list(edge = structure(c(rep(nTips + 1L, 3), c(ind, 0L)),
.Dim = c(3L, 2L)), tip.label = label, Nnode = 1L), .Names = c("edge",
"tip.label", "Nnode"), class = "phylo", order = "postorder")
l <- length(remaining)
res <- numeric(l)
nr <- attr(x, "nr")
storage.mode(nr) <- "integer"
weight <- attr(x, "weight")
storage.mode(weight) <- "double"
f <- init_fitch(x, FALSE, FALSE, m=4L)
edge <- tree$edge
for (i in seq_along(remaining)) {
edge[3, 2] <- remaining[i]
res[i] <- f$pscore(edge)
}
tmp <- which.max(res)
added <- c(added, remaining[tmp])
remaining <- remaining[-tmp]
tree$edge[, 2] <- added
while (length(remaining) > 0) {
edge <- tree$edge[, 2] + 2 * nTips
f$prep_spr(tree$edge)
l <- length(remaining)
res <- numeric(l)
nt <- numeric(l)
for (j in 1:l) {
score <- f$pscore_vec(edge, remaining[j])
res[j] <- min(score)
nt[j] <- which.min(score)
}
tmp <- which.max(res)
added <- c(added, remaining[tmp])
tree <- addOne(tree, remaining[tmp], nt[tmp])
remaining <- remaining[-tmp]
}
added <- c(added, remaining)
added
}
seq_stats <- function(x){
nr <- attr(x, "nr")
contrast <- attr(x, "contrast")
a <- seq_len(nr)
STATE <- POS <- matrix(0L, nrow(contrast), nr)
for(i in seq_along(x)){
IND <- cbind(x[[i]], a)
STATE[IND] <- STATE[IND] + 1L
POS[IND] <- i
}
list(state=STATE, position=POS)
}
# Incompatibility lower Bound
ilb <- function(x, LB) {
nr <- attr(x, "nr")
contrast <- attr(x, "contrast")
rownames(contrast) <- attr(x, "allLevels")
colnames(contrast) <- attr(x, "levels")
weight0 <- attr(x, "weight")
attr(x, "weight") <- rep(1, nr)
attr(x, "index") <- NULL
y <- as.character(x)
singles <- attr(x, "levels")
fun2 <- function(x, singles) all(x %in% singles)
fun1 <- function(x) cumsum(!duplicated(x)) - 1L
fun3 <- function(x) sum(!duplicated(x)) - 1L
tmp <- apply(y, 2, fun2, singles)
ind <- which(tmp)
if (length(ind) < 2) return(0)
y <- y[, ind, drop = FALSE]
weight0 <- weight0[ind]
single_dis <- LB[, ind]
nTips <- nrow(y)
l <- length(weight0)
res <- numeric(nTips)
for (i in 1:(l - 1)) {
for (j in (i + 1):l) {
if ((weight0[i] > 0) & (weight0[j] > 0)) {
z <- paste(y[, i], y[, j], sep = "_")
dis2 <- single_dis[, i] + single_dis[, j]
dis <- fun1(z)
if (dis[nTips] > dis2[nTips]) {
dis <- pmax(dis, dis2) - dis2
if (sum(dis[4:nTips]) > 0) {
wmin <- min(weight0[i], weight0[j])
weight0[i] <- weight0[i] - wmin
weight0[j] <- weight0[j] - wmin
res <- res + dis * wmin
}
}
}
if(weight0[i] < 1e-6) break()
}
}
res
}
#' Branch and bound for finding all most parsimonious trees
#'
#' \code{bab} finds all most parsimonious trees.
#'
#' This implementation is very slow and depending on the data may take very
#' long time. In the worst case all \eqn{(2n-5)!! = 1 \times 3 \times 5
#' \times \ldots \times (2n-5)}{(2n-5)!! = 1 * 3 * 5 * ... * (2n-5)} possible
#' trees have to be examined, where n is the number of species / tips. For ten
#' species there are already 2027025 tip-labelled unrooted trees. It only uses
#' some basic strategies to find a lower and upper bounds similar to penny from
#' phylip. \code{bab} uses a very basic heuristic approach of MinMax Squeeze
#' (Holland et al. 2005) to improve the lower bound. On the positive side
#' \code{bab} is not like many other implementations restricted to binary or
#' nucleotide data.
#'
#' @aliases bab BranchAndBound
#' @param data an object of class phyDat.
#' @param tree a phylogenetic tree an object of class phylo, otherwise a
#' pratchet search is performed.
#' @param trace defines how much information is printed during optimization.
## @param ILBound compute incompatibility lower bound (default TRUE) of
## Holland (2005).
#' @param \dots Further arguments passed to or from other methods
#' @return \code{bab} returns all most parsimonious trees in an object of class
#' \code{multiPhylo}.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com} based on work on Liam
#' Revell
#' @seealso \code{\link{pratchet}}, \code{\link{dfactorial}}
#' @references Hendy, M.D. and Penny D. (1982) Branch and bound algorithms to
#' determine minimal evolutionary trees. \emph{Math. Biosc.} \bold{59},
#' 277-290
#'
#' Holland, B.R., Huber, K.T. Penny, D. and Moulton, V. (2005) The MinMax
#' Squeeze: Guaranteeing a Minimal Tree for Population Data, \emph{Molecular
#' Biology and Evolution}, \bold{22}, 235--242
#'
#' White, W.T. and Holland, B.R. (2011) Faster exact maximum parsimony search
#' with XMP. \emph{Bioinformatics}, \bold{27(10)},1359--1367
#' @keywords cluster
#' @examples
#'
#' data(yeast)
#' dfactorial(11)
#' # choose only the first two genes
#' gene12 <- yeast[, 1:3158]
#' trees <- bab(gene12)
#'
#' @export
bab <- function(data, tree = NULL, trace = 0, ...) {
if (hasArg(ILBound))
ILBound <- list(...)$ILBound
else ILBound <- FALSE
if(inherits(data, "DNAbin") | inherits(data, "AAbin")) data <- as.phyDat(data)
if (!inherits(data, "phyDat")) stop("data must be of class phyDat")
compress <- TRUE
recursive <- TRUE
nTips <- length(data)
if (nTips < 4) return(stree(nTips, tip.label = names(data)))
data <- removeParsimonyUninfomativeSites(data, recursive=recursive)
star_tree <- ifelse(attr(data, "nr") == 0, TRUE, FALSE)
add_taxa <- ifelse(is.null(attr(data, "duplicated")), FALSE, TRUE)
p0 <- attr(data, "p0")
nTips <- length(data)
if (nTips < 4L || star_tree) {
nam <- names(data)
if (star_tree) tree <- stree(length(nam), tip.label = nam)
else tree <- stree(nTips, tip.label = names(data))
if(add_taxa) tree <- addTaxa(tree, attr(data, "duplicated"))
tree <- unroot(tree)
return(tree)
}
# compress sequences (all transitions count equal)
data <- compressSites(data)
o <- order(attr(data, "weight"), decreasing = TRUE)
data <- subset(data, select = o, site.pattern=TRUE)
nr <- as.integer(attr(data, "nr"))
inord <- getOrder(data)
data <- data[inord,]
tree <- pratchet(data, start = tree, trace = trace - 1, maxit=10,
all=FALSE, ...)
p_vec <- fitch(tree, data, "site")
nTips <- m <- length(data)
TMP <- matrix(0, m, nr) # UB <-
for (i in 2:m) {
TMP[i, ] <- lowerBound(data[1:i,])
}
weight <- as.double(attr(data, "weight"))
m <- nr * (2L * nTips - 2L)
# Single column discrepancy
mmsAmb <- TMP %*% weight
# mmsAmb <- mmsAmb[nTips] - mmsAmb
mms0 <- mms1 <- 0
if (ILBound) mms1 <- ilb(data, TMP)
mms0 <- mms1 + mmsAmb
mms0 <- mms0[nTips] - mms0
mms0 <- c(mms0, 0)
f <- init_fitch(data, m=4L)
if (trace > 1) print(paste("lower bound:", p0 + mms0[1]))
bound <- f$pscore(tree$edge)
if (trace > 1) print(paste("upper bound:", bound + p0))
startTree <- structure(list(edge = structure(c(rep(nTips + 1L, 3),
as.integer(1:3)), .Dim = c(3L, 2L)), tip.label = names(data),
Nnode = 1L), .Names = c("edge", "tip.label", "Nnode"), class = "phylo",
order = "postorder")
trees <- vector("list", nTips)
trees[[3]] <- list(startTree$edge)
for (i in 4:nTips) trees[[i]] <- vector("list", (2L * i) - 5L) # new
# index M[i] is neues node fuer edge i+1
# index L[i] is length(node) tree mit i+1
L <- as.integer(2L * (1L:nTips) - 3L)
M <- as.integer(1L:nTips + nTips - 1L)
PSC <- matrix(c(3, 1, 0), 1, 3)
PSC[1, 3] <- f$pscore(startTree$edge)
k <- 4L
Nnode <- 1L
npsc <- 1
visited <- numeric(nTips)
result <- list()
while (npsc > 0) {
a <- PSC[npsc, 1]
b <- PSC[npsc, 2]
blub <- PSC[npsc, 3]
PSC <- PSC[-npsc, , drop = FALSE]
npsc <- npsc - 1L
tmpTree <- trees[[a]][[b]]
edge <- tmpTree[, 2] + 2 * nTips
f$prep_spr(tmpTree)
score <- f$pscore_vec(edge, as.integer(a + 1L))
score <- score + blub + mms0[a + 1L]
ms <- min(score)
if (ms < bound + .1) {
if ((a + 1L) < nTips) {
ind <- (1:L[a])[score <= bound]
trees[[a + 1]][seq_along(ind)] <- .Call('AddOnes', tmpTree,
as.integer(a + 1L), as.integer(ind), as.integer(L[a]),
as.integer(M[a]))
l <- length(ind)
# os <- order(score[ind], decreasing=TRUE)
os <- seq_len(l)
# in C++ pushback
PSC <- rbind(PSC, cbind(rep(a + 1, l), os, score[ind] - mms0[a + 1L]))
npsc <- npsc + l
visited[a + 1] <- visited[a + 1] + l
# PSC = rbind(PSC, cbind(rep(a+1, l), os, score[ind][os] ))
}
else {
ind <- which(score == ms)
tmp <- vector("list", length(ind))
tmp[seq_along(ind)] <- .Call('AddOnes', tmpTree,
as.integer(a + 1L), as.integer(ind),
as.integer(L[a]), as.integer(M[a]))
if (ms < bound) {
bound <- ms
if (trace) cat("upper bound:", bound + p0, "\n")
result <- tmp
PSC <- PSC[PSC[, 3] < (bound + 1e-8), ]
npsc <- nrow(PSC)
}
else result <- c(result, tmp)
}
}
}
for (i in seq_along(result)) {
result[[i]] <- structure(list(edge = result[[i]], Nnode = nTips - 2L),
.Names = c("edge", "Nnode"), class = "phylo",
order = "postorder")
}
attr(result, "TipLabel") <- tree$tip.label
class(result) <- "multiPhylo"
if(add_taxa) result <- addTaxa(result, attr(data, "duplicated"))
attr(result, "visited") <- visited
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.