R/rw2collectqc.r

Defines functions plotFragmentSizeDistributionEstimate ramwas2collectqc estimateFragmentSizeDistribution combineBamQcIntoSamples loadBamQC .combine.bams.qc .qcTextLineR .qcTextLineT

Documented in estimateFragmentSizeDistribution plotFragmentSizeDistributionEstimate ramwas2collectqc

### Text QC file headers
.qcTextHeaderT = {paste(sep = "\t",
    "Sample",
    "# BAMs",
    "Total reads",
    "Reads aligned\tRA % of total",
    "Reads after filter\tRAF % of aligned",
    "Reads removed as duplicate\tRRAD % of aligned",
    "Reads used for coverage\tRUFC % of aligned",
    "Forward strand (%)",
    "Avg alignment score",
    "Avg aligned length",
    "Avg edit distance",
    "Non-CpG reads (%)",
    "Avg non-CpG coverage",
    "Avg CpG coverage",
    "Non-Cpg/CpG coverage ratio",
    "ChrX reads (%)",
    "ChrY reads (%)",
    "Peak SQRT")};
.qcTextHeaderR = {paste(sep = "\t",
    "Sample",
    "NBAMs",
    "TotalReads",
    "ReadsAligned\tReadsAlignedPct",
    "ReadsAfterFilter\tReadsAfterFilterPct",
    "ReadsRemovedAsDuplicate\tReadsRemovedAsDuplicatePct",
    "ReadsUsedForCoverage\tReadsUsedForCoveragePct",
    "ForwardStrandPct",
    "AvgAlignmentScore",
    "AvgAlignedLength",
    "AvgEditDistance",
    "NonCpGreadsPct",
    "AvgNonCpGcoverage",
    "AvgCpGcoverage",
    "NonCpg2CpGcoverageRatio",
    "ChrXreadsPct",
    "ChrYreadsPct",
    "PeakSQRT")};

# number of columns in the header
.qccols = length(strsplit(.qcTextHeaderT,"\t",fixed = TRUE)[[1]])

# Create a line for Excel friendly text QC file
.qcTextLineT = function(qc){
    name = qc$name;
    if( is.null(qc) )
        return(paste0(name,paste0(rep("\tNA",.qccols-1), collapse = "")));
    afracb = function(a,b){ sprintf("%s\t%.1f%%",s(a),100*a/b) };
    perc = function(x){ sprintf("%.2f%%",100*x) };
    twodig = function(x){ sprintf("%.2f",x) };
    fourdig = function(x){ sprintf("%.4f",x) };
    s = function(x){
        formatC(x = x,
                digits = ceiling(log10(max(x)+1)),
                big.mark = ",",
                big.interval = 3);
    }

    if( !is.null(qc$hist.score1))
        class(qc$hist.score1) = "qcHistScore";
    if( !is.null(qc$bf.hist.score1))
        class(qc$bf.hist.score1) = "qcHistScoreBF";
    if( !is.null(qc$hist.edit.dist1))
        class(qc$hist.edit.dist1) = "qcEditDist";
    if( !is.null(qc$bf.hist.edit.dist1))
        class(qc$bf.hist.edit.dist1) = "qcEditDistBF";
    if( !is.null(qc$hist.length.matched))
        class(qc$hist.length.matched) = "qcLengthMatched";
    if( !is.null(qc$bf.hist.length.matched))
        class(qc$bf.hist.length.matched) = "qcLengthMatchedBF";
    if( !is.null(qc$frwrev) )
        class(qc$frwrev) = "qcFrwrev";

    rez = paste( sep = "\t",
        name, # Sample
        if(is.null(qc$nbams)){1}else{qc$nbams}, # Number of BAMs
        s(qc$reads.total), # Total reads
        afracb(qc$reads.aligned, qc$reads.total), # Reads aligned, % of total
        afracb(qc$reads.recorded, qc$reads.aligned), # Reads after filter, % ali
        afracb(
            qc$reads.recorded - qc$reads.recorded.no.repeats,
            qc$reads.aligned), # Reads removed as repeats\tRRAR % of aligned
        afracb(qc$reads.recorded.no.repeats, qc$reads.aligned), # Reads for scor
        perc(qcmean( qc$frwrev.no.repeats )), # Forward strand (%)
        twodig(qcmean( qc$hist.score1 )), # Avg alignment score
        twodig(qcmean( qc$hist.length.matched )), # Avg aligned length
        twodig(qcmean( qc$hist.edit.dist1 )), # Avg edit distance
        perc(qcmean( qc$cnt.nonCpG.reads )), # Non-CpG reads (%)
        twodig( qc$avg.noncpg.coverage ), # Avg non-CpG coverage
        twodig( qc$avg.cpg.coverage ), # Avg CpG coverage
        fourdig( qc$avg.noncpg.coverage / qc$avg.cpg.coverage), # Non-Cpg/CpG
        perc(qcmean( qc$chrX.count )), # ChrX reads (%)
        perc(qcmean( qc$chrY.count )), # ChrY reads (%)
        twodig(qcmean( qc$avg.coverage.by.density )) # Peak SQRT
    );
    # message(rez);
    return(rez);
}
# Create a line for R friendly text QC file
.qcTextLineR = function(qc){
    name = qc$name;
    if( is.null(qc) )
        return(paste0(name,paste0(rep("\tNA",.qccols-1), collapse = "")));
    afracb = function(a,b){ paste0(a, "\t", a/b) };
    perc = identity;
    twodig = identity;
    s = identity;

    if( !is.null(qc$hist.score1))
        class(qc$hist.score1) = "qcHistScore";
    if( !is.null(qc$bf.hist.score1))
        class(qc$bf.hist.score1) = "qcHistScoreBF";
    if( !is.null(qc$hist.edit.dist1))
        class(qc$hist.edit.dist1) = "qcEditDist";
    if( !is.null(qc$bf.hist.edit.dist1))
        class(qc$bf.hist.edit.dist1) = "qcEditDistBF";
    if( !is.null(qc$hist.length.matched))
        class(qc$hist.length.matched) = "qcLengthMatched";
    if( !is.null(qc$bf.hist.length.matched))
        class(qc$bf.hist.length.matched) = "qcLengthMatchedBF";
    if( !is.null(qc$frwrev) )
        class(qc$frwrev) = "qcFrwrev";

    rez = paste( sep = "\t",
        name, # Sample
        if(is.null(qc$nbams)){1}else{qc$nbams}, # Number of BAMs
        s(qc$reads.total), # Total reads
        afracb(qc$reads.aligned, qc$reads.total), # Reads aligned, % of total
        afracb(qc$reads.recorded, qc$reads.aligned), # Reads after filter, % ali
        afracb(
            qc$reads.recorded - qc$reads.recorded.no.repeats,
            qc$reads.aligned), # Reads removed as repeats\tRRAR % of aligned
        afracb(qc$reads.recorded.no.repeats, qc$reads.aligned), # Reads for scor
        perc(qcmean( qc$frwrev.no.repeats )), # Forward strand (%)
        twodig(qcmean( qc$hist.score1 )), # Avg alignment score
        twodig(qcmean( qc$hist.length.matched )), # Avg aligned length
        twodig(qcmean( qc$hist.edit.dist1 )), # Avg edit distance
        perc(qcmean( qc$cnt.nonCpG.reads )), # Non-CpG reads (%)
        twodig( qc$avg.noncpg.coverage ), # Avg non-CpG coverage
        twodig( qc$avg.cpg.coverage ), # Avg CpG coverage
        perc( qc$avg.noncpg.coverage / qc$avg.cpg.coverage), # Non-Cpg/CpG
        perc(qcmean( qc$chrX.count )), # ChrX reads (%)
        perc(qcmean( qc$chrY.count )), # ChrY reads (%)
        twodig(qcmean( qc$avg.coverage.by.density )) # Peak SQRT
    );
    return(rez);
}

# combine QC metrics of multiple Rbam objects
.combine.bams.qc = function( bamlist ){
    if(length(bamlist)==1)
        return(bamlist[[1]]);

    ### Deal with QCs
    qclist = lapply(bamlist, `[[`, "qc");

    qcnames = lapply(qclist, names);
    qcnames = unique(unlist(qcnames, use.names = FALSE))

    bigqc = vector("list", length(qcnames));
    names(bigqc) = qcnames;

    for( nm in qcnames){ # nm = qcnames[1]
        bigqc[[nm]] = Reduce(`%add%`, lapply(qclist, `[[`, nm));
    }
    return(list(qc = bigqc));
}

# Load QC metrics for all BAMs
loadBamQC = function(param, bams){
    rbamlist = vector("list", length(bams));
    names(rbamlist) = bams;
    for( bamname in bams){ # bamname = bams[1]
        rdsqcfile = paste0( param$dirrqc, "/", bamname, ".qc.rds" );
        if(file.exists(rdsqcfile)){
            rbamlist[[bamname]] = readRDS(rdsqcfile);
        } else {
            message("QC file not found: ",rdsqcfile)
        }
    }
    return(rbamlist)
}

# Combine BAM QCs by sample
combineBamQcIntoSamples = function(rbamlist, bamset){
    bigqc = vector("list", length(bamset));
    names(bigqc) = names(bamset);
    for( ibam in seq_along(bamset) ){ # ibam=1
        curbams = rbamlist[bamset[[ibam]]];
        qc = .combine.bams.qc(curbams)$qc;
        if( length(qc) > 0 ){
            bigqc[[ibam]] = qc;
        } else {
            bigqc[[ibam]] = list();
        }
        bigqc[[ibam]]$name = names(bamset)[ibam];
    }
    return(bigqc);
}

# Estimate fragmet size distribution
estimateFragmentSizeDistribution = function(frdata, seqLength){

    if( length(frdata) == seqLength )
        return( rep(1, seqLength) );

    ### Point of crossing the middle
    ytop = median(frdata[seq_len(seqLength)]);
    ybottom = median(tail(frdata,seqLength));
    ymidpoint = ( ytop + ybottom )/2;
    yrange = ( ytop - ybottom );
    overymid = (frdata > ymidpoint)
    xmidpoint = which.max( cumsum( overymid - mean(overymid) ) );

    ### interquartile range estimate
    xqrange =
        which.max(cumsum( ((frdata >
                                quantile(frdata,0.25))-0.75) ))
        -
        which.max(cumsum( ((frdata >
                                quantile(frdata,0.75))-0.25) ))

    logitrange = diff(qlogis(c(0.25,0.75)));

    initparam = c(
                    xmidpoint = xmidpoint,
                    xdivider = (xqrange/logitrange)/2,
                    ymultiplier = yrange,
                    ymean = ybottom);

    fsPredict = function( x, param){
        (plogis((param[1]-x)/param[2]))*param[3]+param[4]
    }

    x = seq_along(frdata);

    # plot( x, frdata)
    # lines( x, fsPredict(x, initparam), col="blue", lwd = 3)

    fmin = function(param){
        fit2 = fsPredict(x, param);
        # (plogis((param[1]-x)/param[2]))*param[3]+param[4];
        error = frdata - fit2;
        e2 = error^2;
        e2s = sort.int(e2,decreasing = TRUE);
        return(sum(e2s[-(seq_len(10))]));
    }

    estimate = optim(par = initparam, fn = fmin, method = "BFGS");
    param = estimate$par;
    fit = fsPredict(x, param);

    rezfit = plogis((param[1]-x)/param[2]);
    keep = rezfit>0.05;
    keep[length(keep)] = FALSE;
    rezfit = rezfit - max(rezfit[!keep],0)
    rezfit[seq_len(seqLength)] = rezfit[seqLength];
    rezfit = rezfit[keep];
    rezfit = rezfit / rezfit[1];

    # lz = lm(frdata[seq_along(rezfit)] ~ rezfit)
    # lines(rezfit*lz$coefficients[2]+lz$coefficients[1], lwd = 4, col="red");

    return(rezfit);
}

# Step 2 of RaMWAS
ramwas2collectqc = function( param ){
    param = parameterPreprocess(param);
    dir.create(param$dirqc, showWarnings = FALSE, recursive = TRUE);

    parameterDump(dir = param$dirqc, param = param,
        toplines = c(   "dirrqc",
                        "filebamlist", "filebam2sample",
                        "bam2sample", "bamnames",
                        "scoretag", "minscore",
                        "minfragmentsize", "maxfragmentsize",
                        "maxrepeats",
                        "filecpgset", "filenoncpgset"));
    {
        bams = NULL;
        if( !is.null(param$bamnames) )
            bams = c(bams, param$bamnames);
        if( !is.null(param$bam2sample) )
            bams = c(bams, unlist(param$bam2sample, use.names = FALSE));
        bams = unique(basename(bams));
    } # bams

    {
        message("Load BAM QC info");
        rbamlist = loadBamQC(param, bams);
    }

    collect.qc.summary = function(bamset, dirname){
        dirloc = paste0(param$dirqc, "/", dirname);
        dir.create(dirloc, showWarnings = FALSE, recursive = TRUE);

        bigqc = combineBamQcIntoSamples(rbamlist = rbamlist, bamset = bamset);
        saveRDS(file = paste0(dirloc,"/qclist.rds"), object = bigqc);
        {
            textT = vapply(bigqc, .qcTextLineT, "")
            textR = vapply(bigqc, .qcTextLineR, "")
            writeLines(
                    con = paste0(dirloc, "/Summary_QC.txt"),
                    text = c(.qcTextHeaderT, textT));
            writeLines(
                    con = paste0(dirloc, "/Summary_QC_R.txt"),
                    text = c(.qcTextHeaderR, textR));
            rm(textT, textR);
        } # text summary

        histqc = function(qcfun, plottitle, filename){
            vec = unlist(lapply(bigqc, qcfun));
            vec = vec[vec<1e6];
            if(length(vec) == 0)
                return();
            pdf(paste0(dirloc, "/Fig_hist_", filename, ".pdf"));
            hist(
                x = vec,
                breaks = 3*round(sqrt(length(vec))),
                main = plottitle,
                col = "lightblue",
                xlab = "value",
                yaxs = "i")
            dev.off()
        }

        figfun = function(qcname, plotname){
            message("Saving plots ", plotname);
            pdf(paste0(dirloc,"/Fig_",plotname,".pdf"));
            for( ibam in seq_along(bamset) ){
                plotinfo = bigqc[[ibam]][[qcname]];
                if( !is.null(bigqc[[ibam]][[qcname]]))
                    plot(plotinfo, samplename = names(bamset)[ibam]);
                rm(plotinfo);
            }
            dev.off();
        }

        figfun(
            qcname = "hist.score1",
            plotname = "score");
        figfun(
            qcname = "bf.hist.score1",
            plotname = "score_before_filter");
        figfun(
            qcname = "hist.edit.dist1",
            plotname = "edit_distance");
        figfun(
            qcname = "bf.hist.edit.dist1",
            plotname = "edit_distance_before_filter");
        figfun(
            qcname = "hist.length.matched",
            plotname = "matched_length");
        figfun(
            qcname = "bf.hist.length.matched",
            plotname = "matched_length_before_filter");
        figfun(
            qcname = "hist.isolated.dist1",
            plotname = "isolated_distance");
        figfun(
            qcname = "avg.coverage.by.density",
            plotname = "coverage_by_density");
        # bigqc[[1]]$cnt.nonCpG.reads
        if(length(bigqc) >= 10){
            histqc(
                qcfun = function(x){x$avg.cpg.coverage /
                        max(x$avg.noncpg.coverage,.Machine$double.eps)},
                plottitle = paste0(
                                "Enrichment lower bound\n",
                                "(Avg CpG / non-CpG score)"),
                filename = "enrichment")
            histqc(
                qcfun = function(x){x$avg.noncpg.coverage /
                        x$avg.cpg.coverage * 100},
                plottitle = paste0(
                                "Background noise level\n",
                                "(Avg non-CpG / CpG score, %)"),
                filename = "noise")
            histqc(qcfun = function(x){x$reads.recorded.no.repeats/1e6},
                plottitle = "Number of reads after filters, millions",
                filename = "Nreads")
            histqc(qcfun = function(x){qcmean(x$hist.edit.dist1)},
                plottitle = "Average edit distance of aligned reads",
                filename = "edit_dist")
            histqc(qcfun = function(x){qcmean(x$avg.coverage.by.density)},
                plottitle = paste0(
                                "CpG density at peak sensitivity (SQRT)\n",
                                "(a value per BAM / sample)"),
                filename = "peak")
            histqc(qcfun = function(x){qcmean(x$cnt.nonCpG.reads)},
                plottitle = "Fraction of reads not covering any CpGs",
                filename = "noncpg_reads")
        }
        return(invisible(bigqc));
    }

    # By bam
    bamset = bams;
    names(bamset) = bams;
    dirname = "summary_bams";
    message("Saving QC info by BAM");
    collect.qc.summary(bamset, dirname);
    rm(bamset, dirname);

    if( !is.null(param$bam2sample) ){
        # by sample
        message("Saving QC info by BAMs in bam2sample");
        bb = unlist(param$bam2sample, use.names = FALSE);
        names(bb) = bb;
        collect.qc.summary(
                    bamset = bb,
                    dirname = "summary_bams_in_bam2sample");
        message("Saving QC info by SAMPLE");
        collect.qc.summary(
                    bamset = param$bam2sample,
                    dirname = "summary_by_sample");
        message("Saving QC info TOTAL (all BAMs in bam2sample)");
        uniqbams = unique(unlist(param$bam2sample, use.names = FALSE));
        bigqc = collect.qc.summary(
                    bamset = list(total = uniqbams),
                    dirname = "summary_total");
        rm(uniqbams);
    } else {
        message("Saving QC info TOTAL (all BAMs in bamnames/filebamlist)");
        bigqc = collect.qc.summary(
                    bamset = list(total=bams),
                    dirname = "summary_total");
    }

    ### Fragment size
    frdata = bigqc$total$hist.isolated.dist1;
    estimate = estimateFragmentSizeDistribution(frdata, param$minfragmentsize);
    writeLines(
            con = paste0(param$dirfilter,"/Fragment_size_distribution.txt"),
            text = as.character(estimate));

    pdf(paste0(param$dirqc,"/Fragment_size_distribution_estimate.pdf"), 8, 8);
    plotFragmentSizeDistributionEstimate(frdata, estimate);
    title("Isolated CpG coverage vs.\nfragment size distribution estimate");
    dev.off();
    return(invisible(NULL));
}

plotFragmentSizeDistributionEstimate = function(
        frdata, 
        estimate, 
        col1 = "blue", 
        col2 = "red"){
    lz = lm(frdata[seq_along(estimate)] ~ estimate)
    plot(
        x = as.vector(frdata)/1000,
        pch = 19,
        col = col1,
        ylab = "Read count, thousands",
        xlab = "Distance to isolated CpGs, bp",
        xaxs = "i",
        xlim = c(0, length(frdata)), 
        axes = FALSE);
    axis(1);
    axis(2);
    lines(
        x = (estimate*lz$coefficients[2]+lz$coefficients[1])/1000,
        lwd = 4,
        col = col2);
}

Try the ramwas package in your browser

Any scripts or data that you put into this service are public.

ramwas documentation built on Nov. 8, 2020, 8:24 p.m.