Nothing
#' Principal components analysis on the genes
#'
#' Computes and plots the principal components of the genes, eventually displaying
#' the samples as in a typical biplot visualization.
#'
#' The implementation of this function is based on the beautiful \code{ggbiplot}
#' package developed by Vince Vu, available at https://github.com/vqv/ggbiplot.
#' The adaptation and additional parameters are tailored to display typical genomics data
#' such as the transformed counts of RNA-seq experiments
#'
#' @param x A \code{\link{DESeqTransform}} object, with data in \code{assay(x)},
#' produced for example by either \code{\link{rlog}} or
#' \code{\link{varianceStabilizingTransformation}}
#' @param ntop Number of top genes to use for principal components,
#' selected by highest row variance
#' @param choices Vector of two numeric values, to select on which principal components to plot
#' @param arrowColors Vector of character, either as long as the number of the samples, or one single value
#' @param groupNames Factor containing the groupings for the input data. Is efficiently chosen
#' as the (interaction of more) factors in the colData for the object provided
#' @param biplot Logical, whether to additionally draw the samples labels as in a biplot representation
#' @param scale Covariance biplot (scale = 1), form biplot (scale = 0). When scale = 1,
#' the inner product between the variables approximates the covariance and the
#' distance between the points approximates the Mahalanobis distance.
#' @param pc.biplot Logical, for compatibility with biplot.princomp()
#' @param obs.scale Scale factor to apply to observations
#' @param var.scale Scale factor to apply to variables
#' @param groups Optional factor variable indicating the groups that the observations
#' belong to. If provided the points will be colored according to groups
#' @param ellipse Logical, draw a normal data ellipse for each group
#' @param ellipse.prob Size of the ellipse in Normal probability
#' @param labels optional Vector of labels for the observations
#' @param labels.size Size of the text used for the labels
#' @param alpha Alpha transparency value for the points (0 = transparent, 1 = opaque)
#' @param var.axes Logical, draw arrows for the variables?
#' @param circle Logical, draw a correlation circle? (only applies when prcomp
#' was called with scale = TRUE and when var.scale = 1)
#' @param circle.prob Size of the correlation circle in Normal probability
#' @param varname.size Size of the text for variable names
#' @param varname.adjust Adjustment factor the placement of the variable names,
#' >= 1 means farther from the arrow
#' @param varname.abbrev Logical, whether or not to abbreviate the variable names
#' @param returnData Logical, if TRUE returns a data.frame for further use, containing the
#' selected principal components for custom plotting
#' @param coordEqual Logical, default FALSE, for allowing brushing. If TRUE, plot using
#' equal scale cartesian coordinates
#' @param scaleArrow Multiplicative factor, usually >=1, only for visualization purposes,
#' to allow for distinguishing where the variables are plotted
#' @param useRownamesAsLabels Logical, if TRUE uses the row names as labels for plotting
#' @param point_size Size of the points to be plotted for the observations (genes)
#' @param annotation A \code{data.frame} object, with row.names as gene identifiers (e.g. ENSEMBL ids)
#' and a column, \code{gene_name}, containing e.g. HGNC-based gene symbols
#'
#' @return An object created by \code{ggplot}, which can be assigned and further customized.
#'
#' @examples
#'
#' library(DESeq2)
#' dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
#' rlt <- rlogTransformation(dds)
#' groups <- colData(dds)$condition
#' groups <- factor(groups, levels = unique(groups))
#' cols <- scales::hue_pal()(2)[groups]
#' genespca(rlt, ntop=100, arrowColors = cols, groupNames = groups)
#'
#' groups_multi <- interaction(as.data.frame(colData(rlt)[, c("condition", "tissue")]))
#' groups_multi <- factor(groups_multi, levels = unique(groups_multi))
#' cols_multi <- scales::hue_pal()(length(levels(groups_multi)))[factor(groups_multi)]
#' genespca(rlt, ntop = 100, arrowColors = cols_multi, groupNames = groups_multi)
#'
#' @export
genespca <- function(x,
ntop,
choices = c(1, 2),
arrowColors = "steelblue",
groupNames="group",
biplot = TRUE,
scale = 1, pc.biplot = TRUE,
obs.scale = 1 - scale, var.scale = scale, groups = NULL,
ellipse = FALSE, ellipse.prob = 0.68, labels = NULL, labels.size = 3,
alpha = 1, var.axes = TRUE, circle = FALSE, circle.prob = 0.69,
varname.size = 4, varname.adjust = 1.5, varname.abbrev = FALSE,
returnData = FALSE, coordEqual = FALSE, scaleArrow = 1,
useRownamesAsLabels = TRUE, point_size = 2, annotation = NULL) {
stopifnot(length(choices) == 2)
if (length(arrowColors) != 1 & length(arrowColors) != ncol(x))
stop("Please provide either one color or a vector as long as the number of samples")
rv <- rowVars(assay(x))
select <- order(rv, decreasing = TRUE)[seq_len(min(ntop, length(rv)))]
pca <- prcomp((assay(x)[select, ]))
percentVar <- pca$sdev^2 / sum(pca$sdev^2)
if (!biplot) {
nobs.factor <- sqrt(nrow(pca$x) - 1)
devs <- pca$sdev
pcast <- pca
pcast$x <- sweep(pca$x, 2, 1 / (devs * nobs.factor), FUN = "*") * nobs.factor
d <- data.frame(PC1 = pcast$x[, choices[1]],
PC2 = pcast$x[, choices[2]],
names = rownames((assay(x)[select, ])))
if (returnData) {
attr(d, "percentVar") <- percentVar
return(d)
}
ggplot(data = d, aes_string(x = "PC1", y = "PC2")) +
geom_point(size = 3) +
xlab(paste0("PC", choices[1], ": ", round(percentVar[choices[1]] * 100), "% variance")) +
ylab(paste0("PC", choices[2], ": ", round(percentVar[choices[2]] * 100), "% variance")) +
# geom_text(aes(label=names),hjust=0.25, vjust=-0.5, show.legend = F) +
ggtitle("title") + theme_bw()
} else {
if (inherits(pca, "prcomp")) {
nobs.factor <- sqrt(nrow(pca$x) - 1)
d <- pca$sdev
u <- sweep(pca$x, 2, 1 / (d * nobs.factor), FUN = "*")
v <- pca$rotation
}
choices <- pmin(choices, ncol(u))
df.u <- as.data.frame(sweep(u[, choices], 2, d[choices]^obs.scale,
FUN = "*"))
v <- sweep(v, 2, d^var.scale, FUN = "*")
df.v <- as.data.frame(v[, choices])
names(df.u) <- c("xvar", "yvar")
names(df.v) <- names(df.u)
if (pc.biplot) {
df.u <- df.u * nobs.factor
}
r <- sqrt(qchisq(circle.prob, df = 2)) * prod(colMeans(df.u^2)) ^ (1/4)
v.scale <- rowSums(v^2)
df.v <- r * df.v / sqrt(max(v.scale))
if (obs.scale == 0) {
u.axis.labs <- paste("standardized PC", choices, sep = "")
} else {
u.axis.labs <- paste("PC", choices, sep = "")
}
u.axis.labs <- paste(u.axis.labs, sprintf("(%0.1f%% explained var.)",
100 * pca$sdev[choices]^2 / sum(pca$sdev^2)))
if (!is.null(labels)) {
df.u$labels <- labels
}
if (!is.null(groups)) {
df.u$groups <- groups
}
# additionally...
df.u$ids <- rownames(df.u)
if(!is.null(annotation)) {
df.u$geneNames <- annotation$gene_name[match(df.u$ids, rownames(annotation))]
} else {
df.u$geneNames <- df.u$ids
}
if (varname.abbrev) {
df.v$varname <- abbreviate(rownames(v))
} else {
df.v$varname <- rownames(v)
}
df.v$angle <- with(df.v, (180/pi) * atan(yvar/xvar))
df.v$hjust <- with(df.v, (1 - varname.adjust * sign(xvar)) / 2)
if (returnData) {
return(df.u)
}
g <- ggplot(data = df.u, aes_string(x = "xvar", y = "yvar")) + xlab(u.axis.labs[1]) +
ylab(u.axis.labs[2]) # + coord_equal() # REMOVED OTHERWISE BRUSH DOES NOT WORK PROPERLY
if (coordEqual) g <- g + coord_equal()
if (!is.null(df.u$labels)) {
if (!is.null(df.u$groups)) {
g <- g + geom_text(aes(label = labels, color = groups),
size = labels.size)
} else {
g <- g + geom_text(aes(label = labels), size = labels.size)
}
} else {
if (!is.null(df.u$groups)) {
g <- g + geom_point(aes(color = groups), size = point_size, alpha = alpha)
} else {
g <- g + geom_point(size = point_size, alpha = alpha)
}
}
if (useRownamesAsLabels) {
g <- g + geom_text(aes_string(label = "geneNames"), size = labels.size, hjust = 0.25, vjust = -0.75)
}
if (!is.null(df.u$groups) && ellipse) {
theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
circle <- cbind(cos(theta), sin(theta))
ell <- ddply(df.u, "groups", function(x) {
if (nrow(x) <= 2) {
return(NULL)
}
sigma <- var(cbind(x$xvar, x$yvar))
mu <- c(mean(x$xvar), mean(x$yvar))
ed <- sqrt(qchisq(ellipse.prob, df = 2))
data.frame(sweep(circle %*% chol(sigma) * ed, 2,
mu, FUN = "+"), groups = x$groups[1])
})
names(ell)[1:2] <- c("xvar", "yvar")
g <- g + geom_path(data = ell, aes(color = groups, group = groups))
}
# moved down to have the arrows drawn on top of the points and not vice versa
if (var.axes) {
if (circle) {
theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi,
length = 50))
circle <- data.frame(xvar = r * cos(theta), yvar = r *
sin(theta))
g <- g + geom_path(data = circle, color = "steelblue",
size = 1/2, alpha = 1/3)
}
df.v$scaleArrow <- scaleArrow # quick fix for mapping scaling of the arrows
arrowColors <- factor(arrowColors, levels = unique(arrowColors))
df.v$arrowColors <- factor(arrowColors, levels = unique(arrowColors))
df.v$groupNames <- factor(groupNames, levels = unique(groupNames))
df.v$sca_x <- df.v$xvar * scaleArrow
df.v$sca_y <- df.v$yvar * scaleArrow
df.v$sta_x <- 0
df.v$sta_y <- 0
g <- g + geom_segment(data = df.v, aes_string(x = "sta_x", y = "sta_y", xend = "sca_x", yend = "sca_y", color = "arrowColors"),
arrow = arrow(length = unit(1/2, "picas"))) +
scale_color_manual(values = levels(arrowColors), name = "Group", labels = levels(groupNames))
}
if (var.axes) {
g <- g + geom_text(data = df.v, aes_string(label = "varname",
x = "sca_x", y = "sca_y", # angle = angle,
hjust = "hjust"),
color = arrowColors, size = varname.size)
}
g <- g + theme_bw()
return(g)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.