plotPCcorrs: Plot significance of (cor)relations of covariates VS...

Description Usage Arguments Value Examples

View source: R/correlatePCs.R

Description

Plots the significance of the (cor)relation of each covariate vs a principal component

Usage

1
plotPCcorrs(pccorrs, pc = 1, logp = TRUE)

Arguments

pccorrs

A data.frame object generated by correlatePCs

pc

An integer number, corresponding to the principal component of interest

logp

Logical, defaults to TRUE, displays the -log10 of the pvalue instead of the p value itself

Value

A base plot object

Examples

1
2
3
4
5
6
library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
res <- correlatePCs(pcaobj, colData(dds))
plotPCcorrs(res)

pcaExplorer documentation built on Nov. 8, 2020, 5:29 p.m.