Description Usage Arguments Value Examples
Computes the significance of (cor)relations between PCA scores and the sample
experimental covariates, using Kruskal-Wallis test for categorial variables
and the cor.test
based on Spearman's correlation for continuous
variables
1 | correlatePCs(pcaobj, coldata, pcs = 1:4)
|
pcaobj |
A |
coldata |
A |
pcs |
A numeric vector, containing the corresponding PC number |
A data.frame
object with computed p values for each covariate
and for each principal component
1 2 3 4 5 | library(DESeq2)
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaobj <- prcomp(t(assay(rlt)))
correlatePCs(pcaobj, colData(dds))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.