pcaplot: Sample PCA plot for transformed data

Description Usage Arguments Value Examples

Description

Plots the results of PCA on a 2-dimensional space

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
pcaplot(
  x,
  intgroup = "condition",
  ntop = 500,
  returnData = FALSE,
  title = NULL,
  pcX = 1,
  pcY = 2,
  text_labels = TRUE,
  point_size = 3,
  ellipse = TRUE,
  ellipse.prob = 0.95
)

Arguments

x

A DESeqTransform object, with data in assay(x), produced for example by either rlog or varianceStabilizingTransformation

intgroup

Interesting groups: a character vector of names in colData(x) to use for grouping

ntop

Number of top genes to use for principal components, selected by highest row variance

returnData

logical, if TRUE returns a data.frame for further use, containing the selected principal components and intgroup covariates for custom plotting

title

The plot title

pcX

The principal component to display on the x axis

pcY

The principal component to display on the y axis

text_labels

Logical, whether to display the labels with the sample identifiers

point_size

Integer, the size of the points for the samples

ellipse

Logical, whether to display the confidence ellipse for the selected groups

ellipse.prob

Numeric, a value in the interval [0;1)

Value

An object created by ggplot, which can be assigned and further customized.

Examples

1
2
3
dds <- makeExampleDESeqDataSet_multifac(betaSD_condition = 3, betaSD_tissue = 1)
rlt <- DESeq2::rlogTransformation(dds)
pcaplot(rlt, ntop = 200)

pcaExplorer documentation built on Nov. 8, 2020, 5:29 p.m.