Nothing
pipeline.sampleSimilarityAnalysisCor <- function()
{
mixColors<-function(c1, c2,alpha=122 )
{
do.call( rgb,
as.list( c( colMeans( sapply(c(2,4,6),function(i)
c( strtoi(substr(c1,i,i+1),16), strtoi(substr(c2,i,i+1),16) )
) ), alpha ) /255 )
)
}
groupwise.group.colors.stability.1 <- apply((col2rgb(groupwise.group.colors) + 0.7 *
(255 - col2rgb(groupwise.group.colors))) / 255,
2, function(x) rgb(x[1],x[2],x[3]))
groupwise.group.colors.stability.2 <- apply((col2rgb(groupwise.group.colors) + 0.9 *
(255 - col2rgb(groupwise.group.colors))) / 255,
2, function(x) rgb(x[1],x[2],x[3]))
stability.colors <- group.colors
stability.colors[which(group.silhouette.coef < 0.5)] <- groupwise.group.colors.stability.1[group.labels[names(which(group.silhouette.coef < 0.5))]]
stability.colors[which(group.silhouette.coef < 0)] <- groupwise.group.colors.stability.2[group.labels[names(which(group.silhouette.coef < 0))]]
pcm.module <- cor( get(paste("spot.list.",preferences$standard.spot.modules,sep=""))$spotdata )
pcm.metadata <- cor( metadata )
if( any(is.na(pcm.module)) )
{
util.warn("Constant sample values in module data. Correlation values of those samples cannot be calculated.")
}
#### Correlation Spanning Tree ####
filename <- file.path(paste(files.name, "- Results"), "Sample Similarity Analysis", "Correlation Spanning Tree.pdf")
util.info("Writing:", filename)
pdf(filename, 21/2.54, 21/2.54, useDingbats=FALSE)
for (i in 1:2 )
{
adj.matrix <- if( i == 1 ) pcm.module else pcm.metadata
adj.matrix[ which(is.na(adj.matrix)) ] <- 0
n <- if( i == 1 ) paste( "module data (", preferences$standard.spot.modules, ")") else "metagene data"
g <- graph.adjacency(-adj.matrix, weighted=TRUE, mode="undirected")
stg <- minimum.spanning.tree(g)
E(stg)$weight <- 1
layout <- layout_with_kk(stg)
par(mar=c(1,1,1,1))
E(stg)$color <- apply( get.edgelist( stg ), 1, function(x) mixColors( group.colors[x[1]], group.colors[x[2]] ) )
plot(stg, layout=layout, vertex.size=5, vertex.label = rep("",ncol(adj.matrix)),
vertex.color=group.colors, main=paste("Correlation Spanning Tree on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
E(g)$color <- "darkgrey"
plot(stg, layout=layout, vertex.size=5, vertex.label = rep("",ncol(adj.matrix)),
vertex.color=stability.colors, main=paste("Correlation Spanning Tree & silhouette scores on",n))
legend("bottomright", rep(as.character(unique(group.labels)),3), cex=0.5,
text.col=c(groupwise.group.colors,groupwise.group.colors.stability.1,groupwise.group.colors.stability.2), bg="white",ncol=3,
title="0.5<S 0<S<0.5 S<0",title.col="black")
box()
if (ncol(adj.matrix) < 1000)
{
plot(stg, layout=layout, vertex.size=5, vertex.label = colnames(adj.matrix),
vertex.label.cex=if (ncol(adj.matrix)<100) 1.2 else 0.6,
vertex.color=group.colors, main=paste("Correlation Spanning Tree on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
}
}
dev.off()
#### Correlation Backbone ####
filename <- file.path(paste(files.name, "- Results"), "Sample Similarity Analysis", "Correlation Backbone.pdf")
util.info("Writing:", filename)
pdf(filename, 21/2.54, 21/2.54, useDingbats=FALSE)
for (i in 1:2 )
{
adj.matrix <- if( i == 1 ) pcm.module else pcm.metadata
adj.matrix[ which(is.na(adj.matrix)) ] <- 0
n <- if( i == 1 ) paste( "module data (", preferences$standard.spot.modules, ")") else "metagene data"
diag(adj.matrix) <- 0
adj.matrix <- apply(adj.matrix, 1, function(x)
{
x[order(x,decreasing=TRUE)[-c(1:2)]] <- 0
return(x)
})
adj.matrix[which(adj.matrix < 0.5)] <- 0
if (max(adj.matrix) > 0)
{
g <- graph.adjacency(adj.matrix, weighted=TRUE, mode="undirected")
E(g)$weight <- (2 + E(g)$weight)/2
layout <- layout_with_kk(g)
par(mar=c(1,1,1,1))
E(g)$color <- apply( get.edgelist( g ), 1, function(x) mixColors( group.colors[x[1]], group.colors[x[2]] ) )
plot(g, layout=layout, vertex.size=5, vertex.label = rep("",ncol(adj.matrix)),
vertex.color=group.colors, main=paste("Correlation backbone (2NN-graph) on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
E(g)$color <- "darkgrey"
plot(g, layout=layout, vertex.size=5, vertex.label = rep("",ncol(adj.matrix)),
vertex.color=stability.colors, main=paste("Correlation backbone & silhouette scores on",n))
legend("bottomright", rep(as.character(unique(group.labels)),3), cex=0.5,
text.col=c(groupwise.group.colors,groupwise.group.colors.stability.1,groupwise.group.colors.stability.2), bg="white",ncol=3,
title="0.5<S 0<S<0.5 S<0",title.col="black")
box()
if (ncol(adj.matrix) < 1000)
{
plot(g, layout=layout, vertex.size=5, vertex.label = colnames(adj.matrix),
vertex.label.cex=if (ncol(adj.matrix)<100) 1.2 else 0.6,
vertex.color=group.colors, main=paste("Correlation backbone on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
}
}
}
dev.off()
#### Correlation Network ####
filename <- file.path(paste(files.name, "- Results"), "Sample Similarity Analysis", "Correlation Network.pdf")
util.info("Writing:", filename)
pdf(filename, 21/2.54, 21/2.54, useDingbats=FALSE)
for (i in 1:2 )
{
adj.matrix <- if( i == 1 ) pcm.module else pcm.metadata
adj.matrix[ which(is.na(adj.matrix)) ] <- 0
n <- if( i == 1 ) paste( "module data (", preferences$standard.spot.modules, ")") else "metagene data"
diag(adj.matrix) <- 0
adj.matrix[which(adj.matrix < 0.5)] <- 0
if (max(adj.matrix) > 0)
{
g <- graph.adjacency(adj.matrix, weighted=TRUE, mode="undirected")
E(g)$weight <- (2 + E(g)$weight)/2
layout <- layout_with_kk( g )
par(mar=c(1,1,1,1))
E(g)$color <- apply( get.edgelist( g ), 1, function(x) mixColors( group.colors[x[1]], group.colors[x[2]], alpha=40 ) )
plot(g, layout=layout, vertex.size=ifelse(ncol(adj.matrix)<250, 5, 3),
vertex.label = rep("",ncol(adj.matrix)),
vertex.color=group.colors, main=paste("Correlation Network on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
E(g)$color <- "darkgrey"
plot(g, layout=layout, vertex.size=ifelse(ncol(adj.matrix) < 250, 5, 3),
vertex.label = rep("",ncol(adj.matrix)),
vertex.color=stability.colors, main=paste("Correlation Network & silhouette scores on",n))
legend("bottomright", rep(as.character(unique(group.labels)),3), cex=0.5,
text.col=c(groupwise.group.colors,groupwise.group.colors.stability.1,groupwise.group.colors.stability.2), bg="white",ncol=3,
title="0.5<S 0<S<0.5 S<0",title.col="black")
box()
if (ncol(adj.matrix) < 1000)
{
plot(g, layout=layout, vertex.size=ifelse(ncol(adj.matrix) < 250, 5, 3),
vertex.label=colnames(adj.matrix),
vertex.label.cex=if (ncol(adj.matrix)<100) 1.2 else 0.6,
vertex.color=group.colors, main=paste("Correlation Network on",n))
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
box()
}
}
}
dev.off()
#### Pairwise Correlation Maps ####
filename <- file.path(paste(files.name, "- Results"), "Sample Similarity Analysis", "Correlation Maps.pdf")
util.info("Writing:", filename)
pdf(filename, 29.7/2.54, 21/2.54, useDingbats=FALSE)
for (i in 1:2 )
{
d <- if( i == 1 ) pcm.module else pcm.metadata
n <- if( i == 1 ) paste( "module data (", preferences$standard.spot.modules, ")") else "metagene data"
d.noNA <- d
d.noNA[ which(is.na(d.noNA)) ] <- 0
hcl <- hclust(dist(d.noNA))
par(mar=c(1,1,1,1))
heatmap(x=d, zlim=c(-1,1), Rowv=NA, Colv=NA, col=color.palette.heatmaps(1000),
labRow=if(nrow(d)<100) rownames(d) else rep("",nrow(d)),
labCol=if(ncol(d)<100) colnames(d) else rep("",ncol(d)),
scale="n", main=paste("Pairwise correlation map on",n),
margins=c(8,6), ColSideColors=group.colors, RowSideColors=group.colors)
par(new=TRUE, mar=c(5,1,1,2))
plot(0,type="n", axes=FALSE, xlab="", ylab="")
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
par(new=TRUE, mar=c(31.6,55,4.2,2))
image(matrix(1:100, 1, 100), col=color.palette.heatmaps(1000), axes=FALSE)
axis(2, c(-1,-0.5,0.5,1,"r"), at=c(0, 0.25, 0.75, 1, 0.5), las=2, tick=FALSE, pos=0, cex.axis=1)
o <- unlist(sapply(unique(group.labels), function(gr)
{
idx <- names(group.labels)[which(group.labels == gr)]
if (length(idx) > 1)
{
hc <- hclust(dist(t(d.noNA[,idx])))
return(hc$labels[hc$order])
}
return(idx)
}))
par(mar=c(1,1,1,1))
heatmap(x=d[o,o], zlim=c(-1,1), Rowv=NA, Colv=NA, col=color.palette.heatmaps(1000),
labRow=if(nrow(d)<100) rownames(d[o]) else rep("",nrow(d)),
labCol=if(ncol(d)<100) colnames(d[o]) else rep("",ncol(d)),
scale="n", main=paste("Pairwise correlation map on",n),
margins=c(8,6), ColSideColors=group.colors[o], RowSideColors=group.colors[o])
par(new=TRUE, mar=c(5,1,1,2))
plot(0,type="n", axes=FALSE, xlab="", ylab="")
legend("bottomright", as.character(unique(group.labels)), cex=0.5, text.col=groupwise.group.colors, bg="white")
par(new=TRUE, mar = c(31.6, 55, 4.2, 2))
image(matrix(1:100, 1, 100), col=color.palette.heatmaps(1000), axes=FALSE)
axis(2, c(-1,-0.5,0.5,1,"r"), at=c(0, 0.25, 0.75, 1, 0.5), las=2, tick=FALSE, pos=0, cex.axis=1)
par(mar=c(1,1,1,1))
heatmap(x=d, zlim=c(-1,1), Rowv=as.dendrogram(hcl), Colv=as.dendrogram(hcl),
labRow=if(nrow(d)<100) rownames(d) else rep("",nrow(d)),
labCol=if(ncol(d)<100) colnames(d) else rep("",ncol(d)),
col=color.palette.heatmaps(1000),
scale="n", main=paste("Pairwise correlation map on",n),
margins=c(8,6), ColSideColors=group.colors, RowSideColors=group.colors)
par(new=TRUE, mar=c(5,1,1,2))
plot(0,type="n", axes=FALSE, xlab="", ylab="")
legend("bottomright", as.character(unique(group.labels)), cex=0.5,
text.col=groupwise.group.colors, bg="white")
par(new=TRUE, mar = c(25, 55, 10.8, 2))
image(matrix(1:100, 1, 100), col=color.palette.heatmaps(1000), axes=FALSE)
axis(2, c(-1,-0.5,0.5,1,"r"), at=c(0, 0.25, 0.75, 1, 0.5), las=2, tick=FALSE, pos=0, cex.axis=1)
if (ncol(d) < 1000 && i == 1)
{
def.par <- par(no.readonly = TRUE)
environment(pipeline.moduleCorrelationMap) <- environment()
pipeline.moduleCorrelationMap(d.noNA, hcl)
par(def.par)
}
}
dev.off()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.