Nothing
#' mitch: An R package for multi-dimensional pathway enrichment analysis
#'
#' mitch is an R package for multi-dimensional enrichment analysis. At it's
#' heart, it uses a rank-MANOVA based statistical approach to detect sets of
#' genes that exhibit enrichment in the multidimensional space as compared to
#' the background. mitch is useful for pathway analysis of profiling studies
#' with two to or more contrasts, or in studies with multiple omics profiling,
#' for example proteomic, transcriptomic, epigenomic analysis of the same
#' samples. mitch is perfectly suited for pathway level differential analysis
#' of scRNA-seq data.
#'
#' A typical mitch workflow consists of:
#' 1) Import gene sets with gmt_import()
#' 2) Import profiling data with mitch_import()
#' 3) Calculate enrichments with mitch_calc()
#' 4) And generate plots and reports with mitch_plots() and mitch_report()
#'
#' More documentation on the github page https://github.com/markziemann/mitch
#' or with ?<function>, eg: ?mitch_import
#'
#' @docType package
#' @name mitch
#' @examples
#' # Example workflow
#' # Import some gene sets
#' genesetsExample<-gmt_import(system.file('extdata/sample_genesets.gmt',
#' package = 'mitch'))
#' # Load some edgeR tables (rna, k9a, k36a).
#' data(rna,k9a,k36a)
#' # Create a list of differential profiles
#' myList<-list('rna'=rna,'k9a'=k9a,'k36a'=k36a)
#' # Import as edgeR table
#' myImportedData<-mitch_import(myList,DEtype='edger')
#' # Calculate enrichment using MANOVA
#' resExample<-mitch_calc(myImportedData,genesetsExample,priority='effect',
#' resrows=5,cores=2)
#' # Generate some high res plots in PDF format
#' mitch_plots(resExample,outfile='outres.pdf')
#' #' Generate a report of the analysis in HTML format
#' mitch_report(resExample,'outres.html')
NULL
#' @import utils
utils::globalVariables(c("p.adjustMANOVA", "effect", "p.adjustANOVA", "Var2",
"value", "..density..","dummy_x","dummy_y"))
mapGeneIds <- function(y, z) {
if (!is.null(attributes(y)$geneTable)) {
gt <- attributes(y)$geneTable
col1 <- length(which(z$geneidentifiers %in% gt[, 1]))
col2 <- length(which(z$geneidentifiers %in% gt[, 2]))
if (col1 + col2 < (nrow(y)/2)) {
stop("Error it looks as if the Gene IDs in the profile don't match
the geneTable")
}
if (col1 > col2) {
colnames(gt) = c("geneidentifiers", "GeneSymbol")
z <- merge(gt, z, by = "geneidentifiers")
z$geneidentifiers = NULL
} else {
colnames(gt) = c("GeneSymbol", "geneidentifiers")
z <- merge(gt, z, by = "geneidentifiers")
z$geneidentifiers = NULL
}
z <- aggregate(. ~ GeneSymbol, z, function(x) {
sum(as.numeric(as.character(x)))
})
colnames(z) = c("geneidentifiers", "y")
}
z
}
edger_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'PValue' and 'logFC'
are required ")
}
PCOL = length(which(names(y) == "PValue"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'PValue' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'PValue' in the input")
}
FCCOL = length(which(names(y) == "logFC"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'logFC' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'logFC' in the input")
}
s <- sign(y$logFC) * -log10(y$PValue)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
deseq2_score <- function(y , geneIDcol = geneIDcol ) {
ZCOL = length(which(names(y) == "stat"))
if (ZCOL > 1) {
stop("Error, there is more than 1 column named 'stat' in the input")
}
if (ZCOL < 1) {
stop("Error, there is no column named 'stat' in the input")
}
s <- y$stat
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
absseq_score <- function(y, geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'pvalue' and
'foldChange' are required ")
}
PCOL = length(which(names(y) == "pvalue"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'pvalue' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'pvalue' in the input")
}
FCCOL = length(which(names(y) == "foldChange"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'foldChange' in
the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'foldChange' in the input")
}
s <- sign(y$foldChange) * -log10(y$pvalue)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
sleuth_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'pval' and 'b'
are required ")
}
PCOL = length(which(names(y) == "pval"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'pval' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'pval' in the input")
}
FCCOL = length(which(names(y) == "b"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'b' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'b' in the input")
}
s <- sign(y$b) * -log10(y$pval)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
topconfect_score <- function(y , geneIDcol = geneIDcol ) {
FCCOL = length(which(names(y) == "confect"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'confect' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'confect' in the input")
}
# better to get the sign of fold change from the effect column
FCCOL = length(which(names(y) == "effect"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'effect' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'effect' in the input")
}
# there is a problem with topconfects having some NA values
yy <- y[!is.na(y$effect), ]
pos <- subset(yy, effect > 0)
neg <- subset(yy, effect < 0)
pos$mitchrank <- rev(seq(from = 1, to = nrow(pos)))
neg$mitchrank <- rev(seq(from = -1, to = -nrow(neg)))
yy <- rbind(pos, neg)
s <- yy$mitchrank
if (!is.null(attributes(y)$geneIDcol)) {
g <- yy[, attributes(y)$geneIDcol]
} else {
g <- rownames(yy)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
ballgown_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'pval' and 'fc' are
required ")
}
PCOL = length(which(names(y) == "pval"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'pval' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'pval' in the input")
}
FCCOL = length(which(names(y) == "fc"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'fc' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'fc' in the input")
}
s <- sign(log2(y$fc)) * -log10(y$pval)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
noiseq_score <- function(y , geneIDcol = geneIDcol ) {
ZCOL = length(which(names(y) == "ranking"))
if (ZCOL > 1) {
stop("Error, there is more than 1 column named 'ranking' in the input")
}
if (ZCOL < 1) {
stop("Error, there is no column named 'ranking' in the input")
}
s <- y$ranking
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
tcc_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'p.value' and 'm.value'
are required ")
}
PCOL = length(which(names(y) == "p.value"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'p.value' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'p.value' in the input")
}
FCCOL = length(which(names(y) == "m.value"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'm.value' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'm.value' in the input")
}
s <- sign(y$m.value) * -log10(y$p.value)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
deds_score <- function(y , geneIDcol = geneIDcol ) {
ZCOL = length(which(names(y) == "t"))
if (ZCOL > 1) {
stop("Error, there is more than 1 column named 't' in the input")
}
if (ZCOL < 1) {
stop("Error, there is no column named 't' in the input")
}
s <- y$t
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
cuffdiff_score <- function(y , geneIDcol = geneIDcol ) {
ZCOL = length(which(names(y) == "test_stat"))
if (ZCOL > 1) {
stop("Error, there is more than 1 column named 'test_stat' in the
input")
}
if (ZCOL < 1) {
stop("Error, there is no column named 'test_stat' in the input")
}
s <- y$test_stat
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
seurat_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'p_val' and 'avg_logFC'
are required ")
}
PCOL = length(which(names(y) == "p_val"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'p_val' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'p_val' in the input")
}
FCCOL = length(which(names(y) == "avg_logFC"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'avg_logFC' in the
input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'avg_logFC' in the input")
}
s <- sign(y$avg_logFC) * -log10(y$p_val)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z$y[is.infinite(z$y) & z$y < 0] <- min(z$y[!is.infinite(z$y)]) - 0.01
z$y[is.infinite(z$y) & z$y > 0] <- max(z$y[!is.infinite(z$y)]) + 0.01
z
}
muscat_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'p_val' and 'logFC'
are required ")
}
PCOL = length(which(names(y) == "p_val"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'p_val' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'p_val' in the input")
}
FCCOL = length(which(names(y) == "logFC"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'logFC' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'logFC' in the input")
}
s <- sign(y$logFC) * -log10(y$p_val)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
scde_score <- function(y , geneIDcol = geneIDcol ) {
ZCOL = length(which(names(y) == "Z"))
if (ZCOL > 1) {
stop("Error, there is more than 1 column named 'Z' in the input")
}
if (ZCOL < 1) {
stop("Error, there is no column named 'Z' in the input")
}
s <- y$Z
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
mast_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'Pr(>Chisq)' and 'coef'
are required ")
}
PCOL = length(which(names(y) == "Pr(>Chisq)"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'Pr(>Chisq)' in the
input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'Pr(>Chisq)' in the input")
}
FCCOL = length(which(names(y) == "coef"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'coef' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'coef' in the input")
}
# because data.table object doesn't seem to work
y<-as.data.frame(y)
s <- sign(y$coef) * -log10(y[,"Pr(>Chisq)"])
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
desingle_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'pvalue' and
'foldChange' are required ")
}
PCOL = length(which(names(y) == "pvalue"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'pvalue' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'pvalue' in the input")
}
FCCOL = length(which(names(y) == "foldChange"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'foldChange' in the
input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'foldChange' in the input")
}
s <- sign(log2(y$foldChange)) * -log10(y$pvalue)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
dmrcate_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'Stouffer' and
'meanbetafc' are required ")
}
PCOL = length(which(names(y) == "Stouffer"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'Stouffer' in the
input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'Stouffer' in the input")
}
FCCOL = length(which(names(y) == "meanbetafc"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'meanbetafc' in the
input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'meanbetafc' in the input")
}
y<-as.data.frame(y)
s <- sign(y$meanbetafc) * -log10(y$Stouffer)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
dep_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, '*p.val' and '*ratio'
are required ")
}
PCOL = length(grep("p.val",names(y)))
if (PCOL > 1) {
message("Note, using the leftmost column with '*p.val' in the name")
}
if (PCOL < 1) {
stop("Error, there is no column named '*p.val' in the input")
}
FCCOL = length(grep("ratio",names(y)))
if (FCCOL > 1) {
message("Note, using the leftmost column with 'ratio' in the name")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'ratio' in the input")
}
PCOL = grep("p.val",names(y))[1]
FCCOL = grep("ratio",names(y))[1]
s <- sign(y[,FCCOL]) * -log10(y[,PCOL])
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
msmstests_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'p.value' and 'LogFC'
are required ")
}
PCOL = length(which(names(y) == "p.value"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'p.value' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'p.value' in the input")
}
FCCOL = length(which(names(y) == "LogFC"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'LogFC' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'LogFC' in the input")
}
s <- sign(y$LogFC) * -log10(y$p.value)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
plgem_score <- function(y , geneIDcol = geneIDcol ) {
LEN = length(y)
if (LEN < 2) {
stop("Error: there are <2 items in the input list, '$p.value' and
'$PLGEM.STN' are required")
}
PCOL = length(which(names(y) == "p.value"))
if (PCOL > 1) {
stop("Error, there is more than 1 item in the list named 'p.value'")
}
if (PCOL < 1) {
stop("Error, there is no item in the list named 'p.value'")
}
FCCOL = length(which(names(y) == "PLGEM.STN"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'PLGEM.STN' in the
input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'PLGEM.STN' in the input")
}
s <- sign(y$PLGEM.STN) * -log10(y$p.value)
g <- rownames(y$PLGEM.STN)
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
sdams_score <- function(y , geneIDcol = geneIDcol ) {
LEN = length(y)
if (LEN < 2) {
stop("Error: there are <2 items in the input list, '$pv_2part' and
'$beta' are required")
}
PCOL = length(which(names(y) == "pv_2part"))
if (PCOL > 1) {
stop("Error, there is more than 1 item in the list named 'pv_2part'")
}
if (PCOL < 1) {
stop("Error, there is no item in the list named 'pv_2part'")
}
FCCOL = length(which(names(y) == "beta"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'beta' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'beta' in the input")
}
s <- sign(y$beta) * -log10(y$pv_2part)
g <- y$feat.names
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
diffbind_score <- function(y , geneIDcol = geneIDcol ) {
NCOL = ncol(y)
if (NCOL < 2) {
stop("Error: there are <2 columns in the input, 'p.value' and 'Fold'
are required ")
}
PCOL = length(which(names(y) == "p.value"))
if (PCOL > 1) {
stop("Error, there is more than 1 column named 'p.value' in the input")
}
if (PCOL < 1) {
stop("Error, there is no column named 'p.value' in the input")
}
FCCOL = length(which(names(y) == "Fold"))
if (FCCOL > 1) {
stop("Error, there is more than 1 column named 'Fold' in the input")
}
if (FCCOL < 1) {
stop("Error, there is no column named 'Fold' in the input")
}
y <- as.data.frame(y)
s <- sign(y$Fold) * -log10(y$p.value)
if (!is.null(attributes(y)$geneIDcol)) {
g <- y[, attributes(y)$geneIDcol]
} else {
g <- rownames(y)
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
z <- mapGeneIds(y, z)
z
}
preranked_score <- function(y, joinType , geneIDcol = geneIDcol ) {
if (!is.null(attributes(y)$geneIDcol)) {
NCOL = ncol(y)
if (NCOL > 2) {
stop("Error: there are >2 columns in the input. Your files need to
have only the gene ID and rank stat ")
}
g <- y[, attributes(y)$geneIDcol]
s <- y[ , !(names(y) %in% geneIDcol)]
} else {
NCOL = ncol(y)
if (NCOL > 1) {
stop("Error: there are >1 columns in the input. Should only contain
the gene ID and rank stat ")
}
g <- rownames(y)
s <- y[,1]
}
z <- data.frame(g, s, stringsAsFactors = FALSE)
colnames(z) <- c("geneidentifiers", "y")
if ( is.null(joinType) ) {
joinType <- "inner"
}
if ( joinType == "inner" ) {
z <- na.omit(z)
}
z <- mapGeneIds(y, z)
z
}
#' mitch_import
#'
#' This function imports differential omics data from common differential tools
#' like edgeR, limma and DESeq2. It calculates a summarised differential
#' expression metric by multiplying the sign of the log fold change by the
#' -log10 of the p-value. If this behaviour is not desired, mitch_import can be
#' bypassed in favour of another scoring metric.
#' @param x a list of differential expression tables
#' @param DEtype the program that generated the differential expression table
#' Valid options are 'edgeR', 'DESeq2', 'limma', 'ABSSeq', 'Sleuth', 'Seurat',
#' 'topConfects', 'muscat', 'Swish', 'scDE', 'MAST', 'DEsingle', 'ballgown',
#' 'NOIseq', 'TCC', 'DEDS', 'cuffdiff', 'fishpond', 'missMethyl', 'DMRcate',
#' 'DEP', 'msmsTests', 'plgem', 'SDAMS', 'DEqMS', 'DiffBind' and 'prescored'.
#' Where 'prescored' is a dataframe containing the test statistic and gene ID
#' (either in rowname or separate column) and nothing else. 'preranked' is an
#' alias for 'prescored'.
#' @param geneIDcol the column containing gene names. If gene names are
#' @param joinType the type of join to perform, either 'inner' or 'full'.
#' By default, joins are 'inner' except for Seurat and muscat where full is
#' used. specified as row names, then geneIDcol=NULL.
#' @param geneTable a 2 column table mapping gene identifiers in the profile to
#' gene identifiers in the gene sets.
#' @return a multi-column table compatible with mitch_calc analysis.
#' @keywords import mitch
#' @export
#' @examples
#' # first step is to create a list of differential profiles
#' data(rna,k9a,k36a)
#' x<-list('rna'=rna,'k9a'=k9a,'k36a'=k36a)
#' # import as edgeR table
#' imported<-mitch_import(x,DEtype='edger')
#' @importFrom plyr join_all
mitch_import <- function(x, DEtype, geneIDcol = NULL, geneTable = NULL,
joinType = NULL) {
if (is.data.frame(x)) {
message("The input is a single dataframe; one contrast only. Converting
it to a list for you.")
NAME = deparse(substitute(x))
x <- list(x = x)
}
if (!is.list(x)) {
stop("Error: Input (x) must be a LIST of dataframes.")
}
if (is.null(names(x))) {
stop("Error: Input (x) must be a NAMED list of dataframes.")
}
if ( length(x)>69 ) {
stop("Error: mitch is currently limited to 69 dimensions or fewer.")
}
if (!is.null(geneTable) && !is.data.frame(geneTable)) {
stop("Error: the geneTable needs to be a dataframe.")
}
if (!is.null(geneTable) && (ncol(geneTable) < 2 || ncol(geneTable) > 2)) {
stop("Error: the geneTable needs to be a dataframe of 2 columns.")
}
# the geneIDcol should be an attribute added to each list item
for (i in seq_len(length(x))) {
if (!is.null(geneIDcol)) {
LEN = length(which(names(x[[i]]) %in% geneIDcol))
if (LEN < 1) {
stop("Error: the specified geneIDcol doesn't seem to exist")
}
if (LEN > 1) {
stop("Error: there are multiple matches for the specified
geneIDcol")
}
attributes(x[[i]])$geneIDcol <- which(names(x[[i]]) %in% geneIDcol)
} else {
attributes(x[[i]])$geneIDcol <- NULL
}
if (!is.null(geneTable)) {
if (!is.data.frame(geneTable)) {
stop("Error: geneTable is not a data frame.")
}
if (ncol(geneTable) != 2) {
stop("Error: geneTable must be a 2 column dataframe.")
}
attributes(x[[i]])$geneTable <- geneTable
}
}
DEtype = tolower(DEtype)
validDEtype = c("edger", "deseq2", "limma", "absseq", "sleuth", "seurat",
"topconfects", "muscat", "swish", "scde", "mast", "desingle",
"ballgown", "noiseq", "tcc", "deds", "cuffdiff", "preranked",
"prescored","fishpond", "missmethyl", "dmrcate", "dep", "msmstests",
"plgem", "sdams", "deqms", "diffbind")
if (DEtype == "edger") {
xx <- lapply(x, edger_score)
} else if (DEtype == "deseq2" || DEtype == "swish" ||
DEtype == "fishpond" ) {
xx <- lapply(x, deseq2_score)
} else if (DEtype == "absseq") {
xx <- lapply(x, absseq_score)
} else if (DEtype == "sleuth") {
xx <- lapply(x, sleuth_score)
} else if (DEtype == "seurat") {
xx <- lapply(x, seurat_score)
} else if (DEtype == "topconfects") {
xx <- lapply(x, topconfect_score)
} else if (DEtype == "muscat") {
xx <- lapply(x, muscat_score)
} else if (DEtype == "scde") {
xx <- lapply(x, scde_score)
} else if (DEtype == "mast" ) {
xx <- lapply(x, mast_score)
} else if (DEtype == "desingle" ) {
xx <- lapply(x, desingle_score)
} else if (DEtype == "ballgown" ) {
xx <- lapply(x, ballgown_score)
} else if (DEtype == "noiseq" ) {
xx <- lapply(x, noiseq_score)
} else if (DEtype == "tcc" ) {
xx <- lapply(x, tcc_score)
} else if (DEtype == "deds" || DEtype == "missmethyl" ||
DEtype == "limma" || DEtype == "deqms" ) {
xx <- lapply(x, deds_score)
} else if (DEtype == "cuffdiff" ) {
xx <- lapply(x, cuffdiff_score)
} else if (DEtype == "dmrcate" ) {
xx <- lapply(x, dmrcate_score)
} else if (DEtype == "dep" ) {
xx <- lapply(x, dep_score)
} else if (DEtype == "msmstests" ) {
xx <- lapply(x, msmstests_score)
} else if (DEtype == "plgem" ) {
xx <- lapply(x, plgem_score)
} else if (DEtype == "sdams" ) {
xx <- lapply(x, sdams_score)
} else if (DEtype == "diffbind" ) {
xx <- lapply(x, diffbind_score)
} else if (DEtype == "preranked" || DEtype == "prescored") {
xx <- lapply(x, preranked_score, joinType = joinType)
} else {
stop(paste("Specified DEtype does not match one of the following:",
validDEtype))
}
# give the colums a unique name otherwise join_all will fail
for (i in seq_len(length(xx))) {
colnames(xx[[i]]) <- c("geneidentifiers", paste("y", i, sep = ""))
}
if (is.null(joinType)) {
if (DEtype == "seurat" || DEtype == "muscat" || DEtype == "scde" ||
DEtype == "mast" || DEtype == "desingle" ) {
xxx <- join_all(xx, by = "geneidentifiers", type = "full")
} else {
xxx <- join_all(xx, by = "geneidentifiers", type = "inner")
}
} else {
xxx <- join_all(xx, by = "geneidentifiers", type = joinType)
}
rownames(xxx) <- xxx$geneidentifiers
xxx$geneidentifiers = NULL
colnames(xxx) <- names(x)
STARTSWITHNUM = length(grep("^[0-9]", colnames(xxx)))
if (STARTSWITHNUM > 0) {
stop("Error: it looks like one or more column names starts with a
number. This is incompatible with downstream analysis. Please modify")
}
MEAN_N_GENES_IN = mean(unlist(lapply(x, nrow)))
N_GENES_OUT = nrow(xxx)
PROP = signif(N_GENES_OUT/MEAN_N_GENES_IN, 3)
message(paste("Note: Mean no. genes in input =", MEAN_N_GENES_IN))
message(paste("Note: no. genes in output =", N_GENES_OUT))
if (PROP < 0.05) {
warning("Warning: less than half of the input genes are also in the
output")
} else {
message(paste("Note: estimated proportion of input genes in output =",
PROP))
}
return(xxx)
}
#' gmt_import
#'
#' This function imports GMT files into a list of character vectors for mitch
#' analysis. GMT files are a commonly used
#' format for lists of genes used in pathway enrichment analysis. GMT files can
#' be obtained from Reactome, MSigDB, etc.
#' @param gmtfile a gmt file.
#' @return a list of gene sets.
#' @keywords import genesets
#' @export
#' @examples
#' # Import some gene sets
#' genesetsExample<-gmt_import(system.file('extdata/sample_genesets.gmt',
#' package = 'mitch'))
#' @import utils
gmt_import <- function(gmtfile) {
genesetLines <- strsplit(readLines(gmtfile), "\t")
genesets <- lapply(genesetLines, utils::tail, -2)
names(genesets) <- unlist(lapply(genesetLines, head, 1))
attributes(genesets)$originfile <- gmtfile
if( any(duplicated(names(genesets))) ) {
warning("Duplicated gene sets names detected")
}
genesets
}
MANOVA <- function(x, genesets, minsetsize = 10, cores = detectCores() - 1,
priority = NULL) {
STARTSWITHNUM = length(grep("^[0-9]", colnames(x)))
if (STARTSWITHNUM > 0) {
stop("Error: it looks like one or more column names starts with a
number. This is incompatible with downstream analysis. Please modify")
}
sets <- names(genesets)
if (is.null(priority)) {
priority = "significance"
}
if (priority !="significance" && priority !="effect" && priority !="SD"){
stop("Error: Parameter 'priority' must be either 'significance'(the
default), 'effect' or 'SD'.")
}
hypotenuse <- function(x) {
sqrt(sum(unlist(lapply(x, function(x) { x^2 })),na.rm = TRUE ))
}
# calculate the hypotenuse for downstream use
HYPOT = hypotenuse(apply(x, 2, length))
res <- mclapply(sets, function(set) {
inset <- rownames(x) %in% as.character(unlist(genesets[set]))
NROW = nrow(x)
if (length(which(inset)) >= minsetsize) {
fit <- manova(x ~ inset)
sumMANOVA <- summary.manova(fit)
sumAOV <- summary.aov(fit)
pMANOVA <- sumMANOVA$stats[1, "Pr(>F)"]
raov <- lapply(sumAOV, function(zz) {
zz[1, "Pr(>F)"]
})
raov <- unlist(raov)
names(raov) <- gsub("^ Response ", "p.", names(raov))
# S coordinates
NOTINSET <- colMeans(x[!inset, ], na.rm=TRUE)
scord <- (2 * (colMeans(x[inset, ], na.rm=TRUE) - NOTINSET))/NROW
names(scord) <- paste0("s-", names(scord))
# calculate the hypotenuse length of s scores
s.dist <- hypotenuse(scord)
names(s.dist) = "s.dist"
mysd = sd(scord)
names(mysd) = "SD"
return(data.frame(set, setSize = sum(inset), pMANOVA, t(scord),
t(raov),t(s.dist), t(mysd), stringsAsFactors = FALSE))
}
}, mc.cores = cores)
fres <- ldply(res, data.frame)
if (nrow(fres) < 1) {
message("Warning: No results found. Check that the gene names in the
profile match the gene sets and consider loosening the minsetsize
parameter.")
} else {
fres$p.adjustMANOVA <- p.adjust(fres$pMANOVA, "fdr")
# prioritisation
if (priority == "significance") {
fres <- fres[order(fres$pMANOVA), ]
message("Note: When prioritising by significance (ie: small
p-values), large effect sizes might be missed.")
}
if (priority == "effect") {
fres <- fres[order(-fres$s.dist), ]
message("Note: Enrichments with large effect sizes may not be
statistically significant.")
}
if (priority == "SD") {
fres <- fres[order(-fres$SD), ]
fres <- subset(fres, p.adjustMANOVA <= 0.05)
message("Note: Prioritisation by SD after selecting sets with
p.adjustMANOVA<=0.05.")
}
attributes(fres)$priority <- priority
return(fres)
}
}
ANOVA <- function(x, genesets, minsetsize = 10, cores = detectCores() - 1,
priority = NULL) {
STARTSWITHNUM = length(grep("^[0-9]", colnames(x)))
if (STARTSWITHNUM > 0) {
stop("Error: it looks like one or more column names starts with a
number. This is incompatible with downstream analysis. Please modify")
}
sets <- names(genesets)
if (is.null(priority)) {
priority = "significance"
}
if (priority != "significance" && priority != "effect") {
stop("Error: Parameter 'priority' must be either 'significance'
(default) or 'effect'.")
}
x<-x[which(!is.na(x)),,drop=FALSE]
res <- mclapply(sets, function(set) {
resample <- function(x, set) {
sss <- x[which(rownames(x) %in%
as.character(unlist(genesets[set]))),]
mysample <- sample(sss, length(sss), replace = TRUE)
mean(mysample)
}
inset <- rownames(x) %in% as.character(unlist(genesets[set]))
NROW = nrow(x)
if (length(which(inset)) >= minsetsize) {
fit <- aov(x[, 1] ~ inset)
pANOVA <- summary(fit)[[1]][, 5][1]
NOTINSET <- mean(x[!inset, ])
s.dist <- (2 * (mean(x[inset, ]) - NOTINSET))/NROW
gres <- data.frame(set, setSize = sum(inset), pANOVA, s.dist,
stringsAsFactors = FALSE)
gres
}
}, mc.cores = cores)
fres <- ldply(res, data.frame)
if (nrow(fres) < 1) {
message("Warning: No results found. Check that the gene names in the
profile match the gene sets and consider loosening the minsetsize
parameter.")
} else {
fres$p.adjustANOVA <- p.adjust(fres$pANOVA, "fdr")
# prioritisation
if (priority == "significance") {
fres <- fres[order(fres$pANOVA), ]
message("Note: When prioritising by significance (ie: small
p-values), large effect sizes might be missed.")
}
if (priority == "effect") {
fres <- fres[order(-abs(fres$s.dist)), ]
message("Note: Enrichments with large effect sizes may not be
statistically significant.")
}
attributes(fres)$priority <- priority
return(fres)
}
}
mitch_metrics_calc<-function(x, genesets, enrichment_result, minsetsize = 10) {
if (!is.null(enrichment_result)) {
num_genesets = length(genesets)
included_genesets <- nrow(enrichment_result)
geneset_counts <- as.data.frame(as.vector(unlist(lapply(genesets,
function(set) {
length(which(as.vector(unlist(set)) %in% rownames(x)))
}))))
rownames(geneset_counts) <- names(genesets)
colnames(geneset_counts) = "count"
genesets_excluded=
names(genesets)[which(geneset_counts$count<minsetsize)]
genesets_included=
names(genesets)[which(geneset_counts$count>=minsetsize)]
num_genesets_excluded = length(genesets_excluded)
num_genesets_included = length(genesets_included)
num_genes_in_genesets = length(unique(as.vector(unlist(genesets))))
num_genes_in_profile = length(unique(rownames(x)))
duplicated_genes_present = length(rownames(x)) > num_genes_in_profile
num_profile_genes_in_sets=length(which(rownames(x) %in%
as.vector(unlist(genesets))))
num_profile_genes_not_in_sets = num_genes_in_profile -
num_profile_genes_in_sets
num_sets_significant =
nrow(enrichment_result[which(enrichment_result$p.adjustMANOVA <
0.05), ])
profile_pearson_correl = cor(x, method = "p")[2, 1]
profile_spearman_correl = cor(x, method = "s")[2, 1]
# genes in each quadrant
g1 = length(which(x[, 1] > 0 & x[, 2] > 0))
g2 = length(which(x[, 1] > 0 & x[, 2] < 0))
g3 = length(which(x[, 1] < 0 & x[, 2] < 0))
g2 = length(which(x[, 1] < 0 & x[, 2] > 0))
# genesets in each quadrant
ns1 = nrow(subset(enrichment_result, p.adjustMANOVA < 0.05 &
enrichment_result[,4] > 0 & enrichment_result[, 5] > 0))
ns2 = nrow(subset(enrichment_result, p.adjustMANOVA < 0.05 &
enrichment_result[,4] > 0 & enrichment_result[, 5] < 0))
ns3 = nrow(subset(enrichment_result, p.adjustMANOVA < 0.05 &
enrichment_result[,4] < 0 & enrichment_result[, 5] < 0))
ns4 = nrow(subset(enrichment_result, p.adjustMANOVA < 0.05 &
enrichment_result[,4] < 0 & enrichment_result[, 5] > 0))
num_sets_significant_by_quadrant = paste(ns1, ns2, ns3, ns4, sep = ",")
dat <- list(num_genesets = num_genesets,
num_genes_in_profile = num_genes_in_profile,
duplicated_genes_present = duplicated_genes_present,
num_profile_genes_in_sets = num_profile_genes_in_sets,
num_profile_genes_not_in_sets = num_profile_genes_not_in_sets,
num_genesets_excluded = num_genesets_excluded,
num_genesets_included = num_genesets_included,
num_genes_in_genesets = num_genes_in_genesets,
genesets_excluded = genesets_excluded,
genesets_included = genesets_included,
profile_pearson_correl = profile_pearson_correl,
profile_spearman_correl = profile_spearman_correl,
num_sets_significant = num_sets_significant,
num_sets_significant_by_quadrant=num_sets_significant_by_quadrant,
geneset_counts = geneset_counts)
dat
}
}
mitch_metrics_calc1d <- function(x, genesets, anova_result, minsetsize = 10) {
if (!is.null(anova_result)) {
num_genesets = length(genesets)
included_genesets <- nrow(anova_result)
geneset_counts <- as.data.frame(as.vector(unlist(lapply(genesets,
function(set) {
length(which(as.vector(unlist(set)) %in% rownames(x)))
}))))
rownames(geneset_counts) <- names(genesets)
colnames(geneset_counts) = "count"
genesets_excluded=
names(genesets)[which(geneset_counts$count<minsetsize)]
genesets_included=
names(genesets)[which(geneset_counts$count >= minsetsize)]
num_genesets_excluded = length(genesets_excluded)
num_genesets_included = length(genesets_included)
num_genes_in_genesets = length(unique(as.vector(unlist(genesets))))
num_genes_in_profile = length(unique(rownames(x)))
duplicated_genes_present = length(rownames(x)) > num_genes_in_profile
num_profile_genes_in_sets = length(which(rownames(x) %in%
as.vector(unlist(genesets))))
num_profile_genes_not_in_sets=num_genes_in_profile-num_profile_genes_in_sets
num_sets_significant=
nrow(anova_result[which(anova_result$p.adjustANOVA<0.05),])
# genes up and down
g1 = length(which(x[, 1] > 0))
g2 = length(which(x[, 1] < 0))
# genesets in each quadrant
num_sets_up = nrow(subset(anova_result, p.adjustANOVA < 0.05 &
anova_result[,4] > 0))
num_sets_dn = nrow(subset(anova_result, p.adjustANOVA < 0.05 &
anova_result[,4] < 0))
dat <- list(num_genesets = num_genesets,
num_genes_in_profile = num_genes_in_profile,
duplicated_genes_present = duplicated_genes_present,
num_profile_genes_in_sets = num_profile_genes_in_sets,
num_profile_genes_not_in_sets = num_profile_genes_not_in_sets,
num_genesets_excluded = num_genesets_excluded,
num_genesets_included = num_genesets_included,
num_genes_in_genesets = num_genes_in_genesets,
genesets_excluded = genesets_excluded,
genesets_included = genesets_included,
num_sets_significant = num_sets_significant,
num_sets_up = num_sets_up,
num_sets_dn = num_sets_dn,
geneset_counts = geneset_counts)
dat
}
}
mitch_rank <- function(x) {
for (i in seq_len(ncol(x))) {
LEN = length(x[, i])
UNIQLEN = length(unique(x[, i]))
if (UNIQLEN/LEN < 0.4) {
warning("Warning: >60% of genes have the same score. This isn't
optimal for rank based enrichment analysis.")
}
}
rank_adj <- function(x) {
xx <- rank(x,na.last = "keep")
num_neg = length(which(x < 0))
num_zero = length(which(x == 0))
num_adj = num_neg + (num_zero/2)
adj <- xx - num_adj
adj
}
adj <- apply(x, 2, rank_adj)
adj
}
detailed_sets <- function(res, resrows = 50) {
# collect ranked genelist of each genest
genesets <- res$input_genesets
ss <- res$ranked_profile
mykeys <- as.character(res$enrichment_result[seq_len(resrows), 1])
dat <- vector(mode = "list", length = resrows)
names(dat) <- mykeys
for (i in seq_len(resrows)) {
sss <- ss[which(rownames(ss) %in% genesets[[which(names(genesets) %in%
as.character(res$enrichment_result[i,
1]))]]), ]
dat[[i]] <- sss
}
dat
}
get_os <- function(){
sysinf <- Sys.info()
if (!is.null(sysinf)){
os <- sysinf['sysname']
if (os == 'Darwin')
os <- "osx"
} else { ## mystery machine
os <- .Platform$OS.type
if (grepl("^darwin", R.version$os))
os <- "osx"
if (grepl("linux-gnu", R.version$os))
os <- "linux"
}
tolower(os)
}
#' mitch_calc
#'
#' This function performs multivariate gene set enrichment analysis.
#' @param x a multicolumn numerical table with each column containing
#' differential expression scores for a contrast.
#' Rownames must match genesets.
#' @param genesets lists of genes imported by the gmt_imprt function or
#' similar.
#' @param minsetsize the minimum number of genes required in a set for it to be
#' included in the statistical analysis.
#' Default is 10.
#' @param cores the number of parallel threads for computation. Defaults to the
#' number of cores present minus 1.
#' @param resrows an integer value representing the number of top genesets for
#' which a detailed report is to be
#' generated. Default is 50.
#' @param priority the prioritisation metric used to selecting top gene sets.
#' Valid options are 'significance',
#' 'effect' and 'SD'.
#' @return mitch res object with the following parts:
#' $input_profile: the supplied input differential profile
#' $input_genesets: the supplied input gene sets
#' $ranked_profile: the differential profile after ranking
#' $enrichment_result: the table of MANOVA/ANOVA enrichment results for each
#' gene set
#' $analysis_metrics: several metrics that are important to the interpretation
#' of the results
#' $detailed_sets: a list of dataframes containing ranks of members of
#' prioritised gene sets.
#' @keywords mitch calc calculate manova
#' @import parallel
#' @import stats
#' @importFrom plyr ldply
#' @export
#' @examples
#' # Example using mitch to calculate multivariate enrichments and
#' # prioritise based on effect size
#' data(myImportedData,genesetsExample)
#' resExample<-mitch_calc(myImportedData,genesetsExample,priority='effect',
#' minsetsize=5,cores=2)
mitch_calc <- function(x, genesets, minsetsize = 10, cores = detectCores() - 1,
resrows = 50, priority = NULL) {
colnames(x) <- gsub("[[:punct:]]", "_", colnames(x))
colnames(x) <- substr(colnames(x), 1, 14)
if ( any(duplicated(colnames(x)))) { stop("Duplicate column names.") }
input_profile <- x
input_genesets <- genesets
ranked_profile <- mitch_rank(input_profile)
if (get_os() == "windows") { cores=1 }
if ( ncol(x)>69 ) {
stop("Error: mitch is currently limited to 69 dimensions or fewer.")
}
if (ncol(x) > 1) {
enrichment_result <- MANOVA(ranked_profile, genesets,
minsetsize = minsetsize, cores = cores, priority = priority)
if (!is.null(enrichment_result)) {
mitch_metrics <- mitch_metrics_calc(x, genesets, enrichment_result)
dat <- list(input_profile = input_profile,
input_genesets = input_genesets,
ranked_profile = ranked_profile,
enrichment_result = enrichment_result,
analysis_metrics = mitch_metrics)
if (nrow(enrichment_result) < resrows) {
resrows <- nrow(enrichment_result)
}
dat$detailed_sets <- detailed_sets(dat, resrows)
attr(dat, "profile_dimensions") <- colnames(dat$input_profile)
dat
}
} else if (ncol(x) == 1) {
enrichment_result <- ANOVA(ranked_profile, genesets,
minsetsize = minsetsize, cores = cores, priority = priority)
if (!is.null(enrichment_result)) {
mitch_metrics <- mitch_metrics_calc1d(x, genesets,
enrichment_result)
dat <- list(input_profile = input_profile,
input_genesets = input_genesets,
ranked_profile = ranked_profile,
enrichment_result = enrichment_result,
analysis_metrics = mitch_metrics)
if (nrow(enrichment_result) < resrows) {
resrows <- nrow(enrichment_result)
}
dat$detailed_sets <- detailed_sets(dat, resrows)
attr(dat, "profile_dimensions") <- colnames(dat$input_profile)
dat
}
}
}
plot1d_profile_dist <- function(res) {
par(mfrow = c(2, 1))
hist(res$input_profile[, 1], breaks = 50,
main = "Distribution of DE scores", xlab = paste("DE score for ",
colnames(res$input_profile)))
plot(res$input_profile, xlab = paste("DE score for ",
colnames(res$input_profile)),
pch = "|", frame.plot = FALSE)
UPS = length(which(res$input_profile > 0))
DNS = length(which(res$input_profile < 0))
TOTAL = nrow(res$input_profile)
mtext(paste(TOTAL, "genes in total,", UPS, "trending up-regulated,",
DNS, "trending down-regulated"))
pl <- recordPlot()
pl
}
plot_geneset_hist <- function(res) {
par(mfrow = c(3, 1))
geneset_counts <- res$analysis_metrics$geneset_counts
boxplot(geneset_counts$count, horizontal = TRUE, frame = FALSE,
main = "Gene set size",
xlab = "number of member genes included in profile")
hist(geneset_counts$count, 100, xlab = "geneset size",
main = "Histogram of geneset size")
hist(geneset_counts$count, 100, xlim = c(0, 500), xlab = "geneset size",
main = "Trimmed histogram of geneset size")
pl <- recordPlot()
pl
}
plot1d_volcano <- function(res) {
par(mfrow = c(1, 1))
sig <- subset(res$enrichment_result, p.adjustANOVA <= 0.05)
plot(res$enrichment_result$s.dist, -log10(res$enrichment_result$pANOVA),
xlab = "s score",
ylab = "-log10(p-value)",
main = "volcano plot of gene set enrichments",
pch = 19, cex = 0.8)
points(sig$s.dist, -log10(sig$pANOVA), pch = 19, cex = 0.85, col = "red")
TOTAL = nrow(res$enrichment_result)
SIG = nrow(sig)
UP = length(which(sig$s.dist > 0))
DN = length(which(sig$s.dist < 0))
SUBHEADER = paste(TOTAL, "gene sets in total,", UP, "upregulated and ",
DN, "downregulated (FDR<=0.05)")
mtext(SUBHEADER)
pl <- recordPlot()
pl
}
plot1d_detailed <- function(res, i) {
par(mfrow = c(3, 1))
ss <- res$ranked_profile
sss <- res$detailed_sets[[i]]
set <- names(res$detailed_sets[i])
size <- length(sss)
beeswarm(sss, vertical = FALSE, cex = 0.75, xlim = c(min(ss), max(ss)),
col = "darkgray", pch = 19, main = set, cex.main = 1.5,
xlab = paste("ranked DE score in:", colnames(ss)))
mtext("beeswarm plot", cex = 0.8)
hist(sss, xlim = c(min(ss), max(ss)), breaks = 15, col = "darkgray",
main = NULL, border = "black",
xlab = paste("ranked DE score in:", colnames(ss)))
mtext("histogram", cex = 0.8)
plot(sss, rep(1, length(sss)), type = "n", xlim = c(min(ss), max(ss)),
frame = FALSE, axes = FALSE, ylab = "",
xlab = paste("ranked DE score in:", colnames(ss)))
rug(sss, ticksize = 0.9)
axis(1)
mtext("rugplot", cex = 0.8)
pl <- recordPlot()
pl
}
plot2d_profile_dist <- function(res) {
plot(res$input_profile, pch = 19,
col = rgb(red = 0, green = 0, blue = 0, alpha = 0.2),
main = "Scatterplot of all genes")
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
pl <- recordPlot()
pl
}
plot2d_profile_density <- function(res) {
palette <- colorRampPalette(c("white", "yellow", "orange", "red",
"darkred", "black"))
ss <- res$ranked_profile
xmin = min(ss[, 1])
xmax = max(ss[, 1])
ymin = min(ss[, 2])
ymax = max(ss[, 2])
k <- MASS::kde2d(ss[, 1], ss[, 2])
X_AXIS = paste("Rank in contrast", colnames(ss)[1])
Y_AXIS = paste("Rank in contrast", colnames(ss)[2])
filled.contour(k, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
color.palette = palette, plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = "Rank-rank plot of all genes", xlab = X_AXIS,
ylab = Y_AXIS)
})
pl <- recordPlot()
pl
}
plot2d_gene_quadrant_barchart <- function(res) {
uu = length(which(res$input_profile[, 1] > 0 & res$input_profile[, 2] > 0))
ud = length(which(res$input_profile[, 1] > 0 & res$input_profile[, 2] < 0))
dd = length(which(res$input_profile[, 1] < 0 & res$input_profile[, 2] < 0))
du = length(which(res$input_profile[, 1] < 0 & res$input_profile[, 2] > 0))
a <- as.data.frame(c(uu, ud, dd, du))
rownames(a) = c("top-right", "bottom-right", "bottom-left", "top-left")
colnames(a) = "a"
barplot(a$a, names.arg = rownames(a),
main = "number of genes in each quadrant")
pl <- recordPlot()
pl
}
plot2d_set_quadrant_barchart <- function(res) {
par(mfrow = c(1, 1))
a <- res$analysis_metrics[14]
a <- as.data.frame(as.numeric(unlist(strsplit(as.character(a), ","))),
stringsAsFactors = FALSE)
rownames(a) = c("top-right", "bottom-right", "bottom-left", "top-left")
colnames(a) = "a"
barplot(a$a, names.arg = rownames(a), main = "number of genesets FDR<0.05")
pl <- recordPlot()
pl
}
plot2d_set_scatter <- function(res) {
sig <- subset(res$enrichment_result, p.adjustMANOVA < 0.05)
plot(res$enrichment_result[, 4:5], pch = 19, col = rgb(red = 0, green = 0,
blue = 0, alpha = 0.2),
main = "Scatterplot of all gene sets; FDR<0.05 in red")
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
points(sig[, 4:5], pch = 19, col = rgb(red = 1, green = 0, blue = 0,
alpha = 0.5))
pl <- recordPlot()
pl
}
plot2d_set_scatter_top <- function(res) {
resrows = length(res$detailed_sets)
top <- head(res$enrichment_result, resrows)
plot(res$enrichment_result[, 4:5], pch = 19, col = rgb(red = 0, green = 0,
blue = 0, alpha = 0.2),
main = paste("Scatterplot of all gene sets; top", resrows,
"in red"))
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
points(top[, 4:5], pch = 19, col = rgb(red = 1, green = 0, blue = 0,
alpha = 0.5))
pl <- recordPlot()
pl
}
plot2d_heatmap <- function(res) {
d = ncol(res$input_profile)
resrows = length(res$detailed_sets)
pl = NULL
if (resrows > 2) {
hmapx <- head(res$enrichment_result[, 4:(4 + d - 1)], resrows)
rownames(hmapx) <- head(res$enrichment_result$set, resrows)
colnames(hmapx) <- gsub("^s.", "", colnames(hmapx))
my_palette <- colorRampPalette(c("blue", "white", "red"))(n = 25)
heatmap.2(as.matrix(hmapx), scale = "none", margins = c(10, 25),
cexRow = 0.8, trace = "none", cexCol = 0.8, col = my_palette)
pl <- recordPlot()
}
pl
}
plot_effect_vs_significance <- function(res) {
par(mfrow = c(1, 1))
plot(res$enrichment_result$s.dist,
-log(res$enrichment_result$p.adjustMANOVA),
xlab = "s.dist (effect size)",
ylab = "-log(p.adjustMANOVA) (significance)",
pch = 19, col = rgb(red = 0, green = 0, blue = 0, alpha = 0.2),
main = "effect size versus statistical significance")
pl <- recordPlot()
pl
}
plot2d_detailed_density <- function(res, i) {
palette <- colorRampPalette(c("white", "yellow", "orange", "red",
"darkred", "black"))
ss <- res$ranked_profile
xmin = min(ss[, 1])
xmax = max(ss[, 1])
ymin = min(ss[, 2])
ymax = max(ss[, 2])
ll <- res$enrichment_result[i, ]
size <- ll$setSize
sss <- res$detailed_sets[[i]]
X_AXIS = paste("Rank in contrast", colnames(ss)[1])
Y_AXIS = paste("Rank in contrast", colnames(ss)[2])
par(mar = c(5, 4, 4, 2))
k <- MASS::kde2d(sss[, 1], sss[, 2])
filled.contour(k, color.palette = palette, xlim = c(xmin, xmax),
ylim = c(ymin, ymax), plot.title = {
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
title(main = ll$set, xlab = X_AXIS, ylab = Y_AXIS)
})
pl <- recordPlot()
pl
}
plot2d_detailed_scatter <- function(res, i) {
ss <- res$ranked_profile
xmin = min(ss[, 1])
xmax = max(ss[, 1])
ymin = min(ss[, 2])
ymax = max(ss[, 2])
sss <- res$detailed_sets[[i]]
X_AXIS = paste("Rank in contrast", colnames(ss)[1])
Y_AXIS = paste("Rank in contrast", colnames(ss)[2])
ll <- res$enrichment_result[i, ]
plot(sss, pch = 19, col = rgb(red = 0, green = 0, blue = 0, alpha = 0.2),
main = ll$set, xlim = c(xmin, xmax), ylim = c(ymin, ymax),
xlab = X_AXIS, ylab = Y_AXIS)
abline(v = 0, h = 0, lty = 2, lwd = 2, col = "blue")
pl <- recordPlot()
pl
}
plot2d_detailed_violin <- function(res, i) {
pl <- list()
ss <- res$ranked_profile
xmin = min(ss[, 1])
xmax = max(ss[, 1])
ymin = min(ss[, 2])
ymax = max(ss[, 2])
ll <- res$enrichment_result[i, ]
size <- ll$setSize
sss <- res$detailed_sets[[i]]
X_AXIS = paste("Rank in contrast", colnames(ss)[1])
Y_AXIS = paste("Rank in contrast", colnames(ss)[2])
ss_long <- melt(ss)
sss_long <- melt(sss)
p <- ggplot(ss_long, aes(Var2, value)) + geom_violin(data = ss_long,
fill = "grey", colour = "grey") + geom_boxplot(data = ss_long,
width = 0.9, fill = "grey", outlier.shape = NA,
coef = 0) + geom_violin(data = sss_long, fill = "black",
colour = "black") + geom_boxplot(data = sss_long, width = 0.1,
outlier.shape = NA) + labs(y = "Position in rank", title = ll[, 1])
print(p + theme_bw() + theme(axis.text = element_text(size = 14),
axis.title = element_text(size = 15),
plot.title = element_text(size = 20)))
pl <- recordPlot()
pl
}
ggpairs_points <- function(res) {
ggpairs_points_plot <- function(data, mapping, ...) {
p <- ggplot(data = data, mapping = mapping) +
geom_point(alpha = 0.05) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_hline(yintercept = 0,
linetype = "dashed")
}
p <- ggpairs(as.data.frame(res$input_profile),
title = "Scatterplot of all genes",
lower = list(continuous = ggpairs_points_plot))
print(p + theme_bw())
}
ggpairs_points_subset <- function(res) {
d <- ncol(res$ranked_profile)
ggpairs_points_plot <- function(data, mapping, ...) {
p <- ggplot(data = data, mapping = mapping) +
geom_point(alpha = 0.05) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_hline(yintercept = 0,
linetype = "dashed")
}
enrichment_result_clipped <- res$enrichment_result[, 4:(3 + d)]
colnames(enrichment_result_clipped) <- colnames(res$input_profile)
p <- ggpairs(enrichment_result_clipped,
title = "Scatterplot of all genessets; FDR<0.05 in red",
lower = list(continuous = ggpairs_points_plot))
print(p + theme_bw())
}
ggpairs_contour <- function(res) {
palette <- colorRampPalette(c("white", "yellow", "orange", "red",
"darkred", "black"))
ggpairs_func <- function(data, mapping, ...) {
p <- ggplot(data = data, mapping = mapping) +
stat_density2d(aes(fill = ..density..),
geom = "tile", contour = FALSE) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_fill_gradientn(colours = palette(25))
p
}
ss <- res$ranked_profile
p <- ggpairs(as.data.frame(ss),
title = "Contour plot of all genes after ranking",
lower = list(continuous = ggpairs_func),
diag = list(continuous = wrap("barDiag",
binwidth = nrow(ss)/100)))
print(p + theme_bw())
}
colname_substitute <- function(res) {
d <- ncol(res$ranked_profile)
if (d > 5) {
mydims <- data.frame(attributes(res)$profile_dimensions)
colnames(mydims) <- "dimensions"
colnames(res$input_profile) <- paste("d",
seq_len(ncol(res$input_profile)), sep = "")
colnames(res$ranked_profile) <- paste("d",
seq_len(ncol(res$ranked_profile)), sep = "")
}
res
}
gene_sector_table <- function(res) {
mytheme <- gridExtra::ttheme_default(
core = list(fg_params = list(cex = 0.5)),
colhead = list(fg_params = list(cex = 0.7)),
rowhead = list(fg_params = list(cex = 0.7)))
d <- ncol(res$ranked_profile)
ss <- res$ranked_profile
sig <- sign(ss)
if (d < 6) {
sig <- sign(ss)
sector_count <- aggregate(seq(from = 1, to = nrow(sig)) ~ .,
sig, FUN = length)
colnames(sector_count)[ncol(sector_count)] <-
"Number of genes in each sector"
grid.newpage()
grid.table(sector_count, theme = mytheme)
}
}
geneset_sector_table <- function(res) {
d <- ncol(res$ranked_profile)
mytheme <- gridExtra::ttheme_default(
core = list(fg_params = list(cex = 0.5)),
colhead = list(fg_params = list(cex = 0.7)),
rowhead = list(fg_params = list(cex = 0.7)))
sig <-
sign(res$enrichment_result[which(res$enrichment_result$p.adjustMANOVA<
0.05), 4:(4 + d - 1)])
if (d < 6) {
if (nrow(sig) > 0) {
sector_count <- aggregate(seq(from = 1, to = nrow(sig)) ~ .,
sig, FUN = length)
colnames(sector_count)[ncol(sector_count)] <-
"Number of gene sets in each sector"
grid.newpage()
grid.table(sector_count, theme = mytheme)
}
}
}
heatmapx <- function(res) {
d <- ncol(res$ranked_profile)
resrows = length(res$detailed_sets)
hmapx <- head(res$enrichment_result[, 4:(4 + d - 1)], resrows)
rownames(hmapx) <- head(res$enrichment_result$set, resrows)
colnames(hmapx) <- gsub("^s.", "", colnames(hmapx))
my_palette <- colorRampPalette(c("blue", "white", "red"))(n = 25)
heatmap.2(as.matrix(hmapx), scale = "none", margins = c(10, 25),
cexRow = 0.8, trace = "none", cexCol = 0.8, col = my_palette)
pl <- recordPlot()
pl
}
plot3d_detailed_density <- function(res, i) {
palette <- colorRampPalette(c("white", "yellow", "orange", "red",
"darkred", "black"))
d <- ncol(res$ranked_profile)
ss <- res$ranked_profile
ll <- res$enrichment_result[i, ]
size <- ll$setSize
sss <- res$detailed_sets[[i]]
empty_cnt <- length(which(is.na(cor(sss,use="pairwise.complete.obs"))))
if ( empty_cnt > 0 ) { return("Too few genes. Skipping density plot.") }
if (d > 5) {
colnames(sss) <- paste("d", seq_len(ncol(res$input_profile)), sep = "")
}
ggpairs_contour_limit_range <- function(data, mapping, ...) {
p <- ggplot(data = data, mapping = mapping) +
stat_density2d(aes(fill = ..density..),
geom = "tile", contour = FALSE) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_fill_gradientn(colours = palette(25)) +
scale_x_continuous(limits =
range(min(ss[, gsub("~", "", as.character(mapping[1]))]),
max(ss[, gsub("~", "",
as.character(mapping[1]))]))) +
scale_y_continuous(limits = range(min(ss[,
gsub("~", "", as.character(mapping[2]))]),
max(ss[, gsub("~", "", as.character(mapping[2]))])))
p
}
p <- ggpairs(as.data.frame(sss), title = ll[, 1],
lower = list(continuous = ggpairs_contour_limit_range),
diag = list(continuous = wrap("barDiag", binwidth = nrow(ss)/10)))
print(p + theme_bw())
}
plot3d_detailed_points <- function(res, i) {
d <- ncol(res$ranked_profile)
ss <- res$ranked_profile
ll <- res$enrichment_result[i, ]
size <- ll$setSize
sss <- res$detailed_sets[[i]]
empty_cnt <- length(which(is.na(cor(sss,use="pairwise.complete.obs"))))
if ( empty_cnt > 0 ) { return("Too few genes. Skipping ggpairs plot.") }
if (d > 5) {
colnames(sss) <- paste("d", seq_len(ncol(res$input_profile)), sep = "")
}
ggpairs_points_limit_range <- function(data, mapping, ...) {
p <- ggplot(data = data, mapping = mapping) +
geom_point(alpha = 0.1) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_x_continuous(limits =
range(min(ss[, gsub("~", "", as.character(mapping[1]))]),
max(ss[, gsub("~", "", as.character(mapping[1]))]))) +
scale_y_continuous(limits = range(min(ss[,
gsub("~", "", as.character(mapping[2]))]),
max(ss[, gsub("~", "", as.character(mapping[2]))])))
p
}
p <- ggpairs(as.data.frame(sss), title = ll[, 1],
lower = list(continuous = ggpairs_points_limit_range),
diag = list(continuous = wrap("barDiag", binwidth = nrow(ss)/10)))
print(p + theme_bw())
}
plot3d_detailed_violin <- function(res, i) {
d <- ncol(res$ranked_profile)
ss <- res$ranked_profile
ll <- res$enrichment_result[i, ]
sss <- res$detailed_sets[[i]]
empty_cnt <- apply(sss,2,function(x) sum(as.numeric(is.finite(x))))
empty_cnt <- length(which(empty_cnt==0))
if ( empty_cnt > 0 ) { return("Too few genes. Skipping violin plot.") }
if (d > 5) {
colnames(sss) <- paste("d", seq_len(ncol(res$input_profile)), sep = "")
}
ss_long <- melt(ss)
sss_long <- melt(sss)
p <- ggplot(ss_long, aes(Var2, value)) +
geom_violin(data = ss_long, fill = "grey", colour = "grey") +
geom_boxplot(data = ss_long, width = 0.9, fill = "grey",
outlier.shape = NA, coef = 0) +
geom_violin(data = sss_long, fill = "black", colour = "black") +
geom_boxplot(data = sss_long, width = 0.1, outlier.shape = NA) +
labs(y = "Position in rank", title = ll[, 1])
print(p + theme_bw() +
theme(axis.text = element_text(size = 14),
axis.title = element_text(size = 15),
plot.title = element_text(size = 20)))
}
#' mitch_plots
#'
#' This function generates several plots of multivariate gene set enrichment in
#' high resolution PDF format.
#' The number of detailed sets to generate is dictated by the resrows set in
#' the mitch_calc command.
#' @param res a mitch results object.
#' @param outfile the destination file for the plots in PDF format. should
#' contain 'pdf' suffix. Defaults to
#' 'Rplots.pdf'
#' @return generates a PDF file containing enrichment plots.
#' @keywords mitch plot plots pdf
#' @export
#' @examples
#' data(resExample)
#' mitch_plots(resExample,outfile='outres.pdf')
#' @import grDevices
#' @import graphics
#' @import GGally
#' @import grid
#' @import gridExtra
#' @importFrom beeswarm beeswarm
#' @importFrom gplots heatmap.2
#' @importFrom reshape2 melt
#' @import ggplot2
#' @importFrom MASS kde2d
mitch_plots <- function(res, outfile = "Rplots.pdf") {
resrows = length(res$detailed_sets)
d = ncol(res$ranked_profile)
pdf(outfile)
if ( d>20 ) {
stop("Error: mitch plotting features are impractical for over 20
dimensions.")
}
if (d == 1) {
plot1d_profile_dist(res)
plot_geneset_hist(res)
plot1d_volcano(res)
lapply(seq_len(resrows), function(i) {
plot1d_detailed(res, i)
})
} else if (d == 2) {
plot2d_profile_dist(res)
plot2d_profile_density(res)
plot2d_gene_quadrant_barchart(res)
plot_geneset_hist(res)
plot2d_set_quadrant_barchart(res)
plot2d_set_scatter(res)
plot2d_set_scatter_top(res)
plot2d_heatmap(res)
plot_effect_vs_significance(res)
lapply(seq_len(resrows), function(i) {
plot2d_detailed_density(res, i)
plot2d_detailed_scatter(res, i)
plot2d_detailed_violin(res, i)
})
} else if (d > 2) {
res <- colname_substitute(res)
ggpairs_points(res)
ggpairs_contour(res)
gene_sector_table(res)
plot_geneset_hist(res)
geneset_sector_table(res)
ggpairs_points_subset(res)
heatmapx(res)
plot_effect_vs_significance(res)
lapply(seq_len(resrows), function(i) {
plot3d_detailed_density(res, i)
plot3d_detailed_points(res, i)
plot3d_detailed_violin(res, i)
})
}
dev.off()
}
#' mitch_report
#'
#' This function generates an R markdown based html report containing tables
#' and several plots of mitch results
#' The plots are in png format, so are not as high in resolution as compared to
#' the PDF generated by mitch_plots
#' function. The number of detailed sets to generate is dictated by the resrows
#' set in the mitch_calc command.
#' @param res a mitch results object.
#' @param outfile the destination file for the html report. should contain
#' 'html' suffix. Defaults to
#' 'Rplots.pdf'
#' @param overwrite should overwrite the report file if it already exists?
#' @return generates a HTML file containing enrichment plots.
#' @keywords mitch report html markdown knitr
#' @export
#' @examples
#' data(resExample)
#' mitch_report(resExample,'outres2.html')
#' @import knitr
#' @importFrom rmarkdown render
#' @import echarts4r
mitch_report <- function(res, outfile , overwrite=FALSE) {
df <- data.frame(dummy_x = seq(20), dummy_y = rnorm(20, 10, 3))
trash<-df %>%
e_charts(dummy_x) %>%
e_scatter(dummy_y, symbol_size = 10)
DIRNAME <- normalizePath(dirname(outfile))
HTMLNAME <- paste( basename(outfile), ".html", sep = "")
HTMLNAME <- gsub(".html.html$", ".html", HTMLNAME)
if (file.exists(HTMLNAME)) {
if (overwrite==FALSE) {
stop("Error: the output HTML file aready exists.")
} else {
message("Note: overwriting existing report")
}
}
if (!file.exists(DIRNAME)) {
stop("Error: the output folder does not exist.")
}
rmd_tmpdir <- tempdir()
rmd_tmpfile <- paste(rmd_tmpdir, "/mitch.Rmd", sep = "")
html_tmp <- paste(paste(rmd_tmpdir, "/mitch_report.html", sep = ""))
DATANAME <- gsub(".html$", ".rds", HTMLNAME)
DATANAME <- paste(rmd_tmpdir, "/", DATANAME, sep = "")
saveRDS(res,DATANAME)
MYMESSAGE = paste("Dataset saved as \"", DATANAME, "\".")
message(MYMESSAGE)
knitrenv <- new.env()
assign("DATANAME", DATANAME, knitrenv)
assign("res", res, knitrenv)
rmd = system.file("mitch.Rmd", package = "mitch")
rmarkdown::render(rmd, intermediates_dir = "." , output_file = html_tmp)
file.copy(html_tmp, outfile, overwrite=overwrite)
}
#' Reactome gene sets
#'
#' Genesets from Reactome database suitable for enrichment analysis.
#' Acquired August 2019. The structure of this data is a named list of
#' vectors, containing human gene names (character strings). This is
#' a sample of 200 gene sets from the approximately 2000 present in the
#' full dataset.
#' @docType data
#' @usage data(genesetsExample)
#' @format A list of gene sets
#' @keywords datasets
#' @references Fabregat et al. (2017) BMC Bioinformatics volume 18,
#' Article number: 142, https://www.ncbi.nlm.nih.gov/pubmed/28249561
#' @source Reactome website: https://reactome.org/
#' @examples
#' data(genesetsExample)
"genesetsExample"
#' H3K36ac profile
#'
#' Example edgeR result of differential ChIP-seq H3K36ac.
#' This is a dataframe which contains columns for log fold change, log counts
#' per million, p-value and FDR adjusted p-value. These columns consist of
#' numerical values. The row names represent human gene names. This is a sample
#' of 1000 gene of an original dataset that contains measurements of ~30000
#' genes.
#' @docType data
#' @usage data(k36a)
#' @format data frame
#' @keywords datasets
#' @examples
#' data(k36a)
"k36a"
#' H3K9ac profile
#'
#' Example edgeR result of differential ChIP-seq H3K9ac.
#' This is a dataframe which contains columns for log fold change, log counts
#' per million, p-value and FDR adjusted p-value. These columns consist of
#' numerical values. The row names represent human gene names. This is a sample
#' of 1000 gene of an original dataset that contains measurements of ~30000
#' genes.
#' @docType data
#' @usage data(k9a)
#' @format data frame
#' @keywords datasets
#' @examples
#' data(k9a)
"k9a"
#' RNA profile
#'
#' Example edgeR result of differential RNA expression.
#' This is a dataframe which contains columns for log fold change, log counts
#' per million, p-value and FDR adjusted p-value. These columns consist of
#' numerical values. The row names represent human gene names. This is a sample
#' of 1000 gene of an original dataset that contains measurements of ~15000
#' genes.
#' @docType data
#' @usage data(rna)
#' @format data frame
#' @keywords datasets
#' @examples
#' data(rna)
"rna"
#' myList: A list of three edgeR results
#'
#' Example edgeR results of differential RNA, H3K9ac and H3K36ac profiling.
#' The structure of this data is a list of three dataframes. Each data frame
#' is 1000 lines only.
#' @docType data
#' @usage data(myList)
#' @format data frame
#' @keywords datasets
#' @examples
#' data(myList)
"myList"
#' myImportedData: Example imported profiles
#'
#' Example of three edgeR profiles imported using mitch.
#' The structure of this data is a dataframe where each column represents
#' one of the following profiling datasets after scoring: RNA, H3K9ac and
#' H3K36ac. Each row represents one gene and this dataset contains just 1000
#' rows to keep the example dataset small.
#' @docType data
#' @usage data(myImportedData)
#' @format data frame
#' @keywords datasets
#' @examples
#' data(myImportedData)
"myImportedData"
#' resExample: Example mitch result
#'
#' Example of mitch results. Enrichment of the Reactome gene sets in the RNA,
#' H3K9ac and H3K36ac datasets. The structure of this data set is a list where
#' the 1st element is "input_profile" that has been imported (data frame), 2nd
#' element is the "input_genesets" (names list of gene names [character
#' vectors]), 3rd is "ranked_profile" which is the input profiling data after
#' ranking (data frame), 4th is "enrichment_result" which is a data frame which
#' provides enrichment information on each gene set in the profiling data
#' including s scores, p-values and FDR adjusted p-values. 5th is
#' "analysis_metrics" (list). The 6th slot is "detailed_sets" which is a list
#' of 5 matrices which details the enrichment of members of selected gene sets.
#' @docType data
#' @usage data(resExample)
#' @format list of mixed data types
#' @keywords datasets
#' @examples
#' data(resExample)
"resExample"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.