Description Usage Arguments Details Value Author(s) References Examples
This is the principal function in the package. The function takes data,
a transformation function name, dimension names, and optional
preselection parameter as input, and runs the maximum likelihood
optimization on the data, performs the transformation, and returns the
transformed data together with a list of transformation paramters for
each dimension. The optimization is set to maximize the likelihood of
the parameters given the data, such that the transformed data is
normally distributed. An optional parameter n2f=[T,F]
allows an
automated preselection of an approximately bivariate normal population
via the norm2Filter
function. The transformation parameters are
then optimized for this preselected region, and finally applied globally
to the entire range of data. The optional argument
parameters.only=[T,F]
specifies whether to return the parameters
or the transformed data.
1 | flowTrans(dat, fun, dims, n2f,parameters.only)
|
dat |
The data to be transformed, should be a |
fun |
A character string naming the transformation function to be
applied. Can be one of: |
dims |
A character vector identifying the dimensions to be transformed. |
n2f |
An optional |
parameters.only |
A logical specifying whether to return only the parameters, and
not the transformed data.
|
The transformation functions are multivariate, common parameter
transformations. The implementation utilizes a look up table to call
optimization routines for the different transformations as well as
optional flowCore
and flowClust
transformation
implementations to optimize parameters and transform data from a
single interface. Parameters are optimized such that the transformed
data is multivariate-normal.
if parameters.only = FALSE
then:
flowTransResult |
A |
If parameters.only=TRUE
the returned value will be a vector of
common transformation parameters:
if mclMultivArcSinh
is called, the returned vector will
contain a, b, and c=0;
if mclMultivBiexp
is called, the returned vector will
contain a, b, c, d, w;
if mclMultivBoxCox
is called, the returned vector will
contain theta;
if mclMultivLinLog
is called, the returned vector will
contain theta.
Greg Finak <greg.finak@ircm.qc.ca>, Raphael Gottardo <raphael.gottardo@ircm.qc.ca>
Finak G, Perez J M, Weng A, Gottardo R. Optimizing Transformations for Flow Cytometry. (Submitted)
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.