Nothing
#' Normalization based on landmark registration
#'
#' This function will perform a normalization of flow cytometry
#' data based on warping functions computed on high-density region
#' landmarks for individual flow channels.
#'
#' @name warpSet
#' @aliases warpSetNCDF warpSetGS warpSetNCDFLowMem
#'
#' @param x A \code{\link[flowCore:flowSet-class]{flowSet}}.
#' @param stains A character vector of flow parameters in \code{x} to be
#' normalized.
#' @param grouping A character indicating one of the phenotypic
#' variables in the \code{phenoData} slot of \code{x} used as a grouping
#' factor. The within-group and between-group variance is computed and
#' a warning is issued in case the latter is bigger than the former,
#' indicating the likely removal of signal by the normalization
#' procedure.
#' @param monwrd Logical. Compute strictly monotone warping
#' functions. This gets directly passed on to
#' \code{\link[fda]{landmarkreg}}.
#' @param subsample Numeric. Reduce the number of events in each \code{flowSet}
#' by sub sampling for all density estimation steps and the calculation
#' of the warping functions. This can increase computation time for
#' large data sets, however it might reduce the accuracy of the density
#' estimates. To be used with care.
#' @param peakNr Numeric scalar. Force a fixed number of peaks to use
#' for the normalization.
#' @param clipRange Only use peaks within a clipped data
#' range. Essentially, the number indicates the percent of clipping on
#' both sides of the data range, e.g. \code{min(x) - 0.01 *
#' diff(range(x))}.
#' @param nbreaks The number of spline sections used to approximate the
#' data. Higher values produce more accurate results, however this
#' comes with the cost of increaseqd computing times. For most data,
#' the default setting is good enough.
#' @param fres A named list of \code{filterResultList} objects. This can
#' be used to speed up the process since the \code{curv1Filter} step
#' can take quite some time.
#' @param bwFac Numeric of lenght 1 used to set the bandwidth factor by
#' \code{\link{curv1Filter}} for smoothing of the density estimate.
#' @param warpFuns Logical indcating whether to return the normalized
#' \code{flowSet} or a list of warping functions.
#' @param target Character vector specifying the target sample to which other samples in the \code{flowSet} should be normalized. If \code{NULL}, then the mean of the peaks is used.
#' @param chunksize an \code{integer}. For a memory-efficient implementation of normalization, \code{chunksize} can be set to perform normalization on chunks of the data of size \code{chunksize}
#' @param \dots Further arguments that are passed on to
#' \code{landmarkreg}.
#'
#' @details
#' Normalization is achived by first identifying high-density regions
#' (landmarks) for each \code{\link[flowCore:flowFrame-class]{flowFrame}}
#' in the \code{flowSet} for a single channel and subsequently by
#' computing warping functions for each \code{flowFrame} that best align
#' these landmarks. This is based on the algorithm implemented in the
#' \code{landmarkreg} function in the \code{\link[fda:fda-package]{fda}}
#' package. An intermediate step classifies the high-density regions, see
#' \code{\link{landmarkMatrix}} for details.
#'
#' Please note that this normalization is on a channel-by-channel
#' basis. Multiple channels are normalized in a loop.
#'
#' @return
#' The normalized \code{flowSet} if \code{warpFuns} is \code{FALSE},
#' otherwise a list of warping functions. Additional inforamtion is
#' attached as the \code{warping} attribute to the \code{flowSet} in form
#' of a list.
#'
#' @references J.O. Ramsay and B.W. Silverman: Applied Functional Data Analysis,
#' Springer 2002
#'
#' @author Florian Hahne
#' @note We currently use a patched fda version.
#' @seealso
#' \code{\link[flowStats:curv1Filter-class]{curv1Filter}}
#' \code{\link{landmarkMatrix}}
#'
#' @examples
#' library(flowCore)
#' data(ITN)
#' dat <- transform(ITN, "CD4"=asinh(CD4), "CD3"=asinh(CD3), "CD8"=asinh(CD8))
#' lg <- lymphGate(dat, channels=c("CD3", "SSC"), preselection="CD4",scale=1.5)
#' dat <- Subset(dat, lg)
#' datr <- warpSet(dat, "CD8", grouping="GroupID", monwrd=TRUE)
#' if(require(flowViz)){
#' d1 <- densityplot(~CD8, dat, main="original", filter=curv1Filter("CD8"))
#' d2 <- densityplot(~CD8, datr, main="normalized", filter=curv1Filter("CD8"))
#' plot(d1, split=c(1,1,2,1))
#' plot(d2, split=c(2,1,2,1), newpage=FALSE)
#' }
#' @export
warpSet <- function(x, ...)UseMethod("warpSet")
warpSet.default <- function(x, ...){
stop(class(x), " is not supported by warpSet!")
}
## Align data in a flowSet by estimating high density regions and using this
## information as landmarks. This works separately on each parameter.
warpSet.GatingSet <- function(x,node=NULL, ...){
#Perform normalization on the subset
#return the normalized data
if(!inherits(x,"GatingSet"))
stop("x must be of class GatingSet")
if(is.null(node))
data <- gs_pop_get_data(x)
else
data <- gs_pop_get_data(x,node);
warpSet(x = data,...)
}
#' @rdname warpSet
warpSet.cytoset <- function(x, stains, grouping=NULL, monwrd=TRUE, subsample=NULL,
peakNr=NULL, clipRange=0.01, nbreaks=11, fres, bwFac=2,
warpFuns=FALSE,target=NULL,chunksize=10,
...)
{
## Some type-checking first
flowCore:::checkClass(stains, "character")
mt <- stains %in% colnames(x)
if(!all(mt))
stop("Invalid stain(s) not matching the flowSet:\n ",
paste(stains[!mt], collapse=", "))
expData <- x;
samples <- sampleNames(expData)
ranges <- lapply(samples, function(sn)range(x[[sn, use.exprs = FALSE]]))
if(!is.null(grouping))
flowCore:::checkClass(grouping, "character", 1)
if(!is.null(subsample))
{
flowCore:::checkClass(subsample, "numeric", 1)
## subsample data set before all density estimation steps
#Does Subset clobber anything in a permanent way for an ncdfFlowSet? Check this, otherwise use subsample.
x <- Subset(x, sampleFilter(size=subsample))
}
flowCore:::checkClass(monwrd, "logical", 1)
flowCore:::checkClass(bwFac, "numeric", 1)
## find landmarks
if(missing(fres))
{
fres <- list()
for(p in stains)
{
cat("\rEstimating landmarks for channel", p, "...")
fres[[p]] <- filter(x[,p], curv1Filter(p, bwFac=bwFac))
}
cat("\n")
}
else
{
if(!is.list(fres) || !all(stains %in% names(fres)))
stop("The supplied list of filter results does not match ",
"the channels to warp.")
if(!all(sapply(fres, is, "filterResult")))
stop("The argument 'fres' has to be a list of filterResultLists.")
cat("Extracting landmarks from user supplied filterResults\n")
}
## define some variables
nb <- 1001
lm <- list()
z <- NULL
## iterate over stains
eps <- .Machine$double.eps
for(p in stains)
{
thisX <- x[,p]
## set up fda parameters
extend <- 0.15
from <- min(sapply(ranges, function(z) z[1,p]-diff(z[,p])*extend), na.rm=TRUE)
to <- max(sapply(ranges, function(z) z[2,p]+diff(z[,p])*extend), na.rm=TRUE)
wbasis <- create.bspline.basis(rangeval=c(from, to),
norder=4, breaks=seq(from, to, len=nbreaks))
WfdPar <- fdPar(wbasis, 1, 1e-4)
densY <- t(fsApply(thisX, function(z){
r <- range(z)[,p]
z <- exprs(z)
z <- z[z[,p]>r[1]+eps & z[,p]<r[2]-eps, p]
density(z, from=from, to=to, n=nb, na.rm=TRUE)$y
}))
argvals <- seq(from, to, len=nb)
fdobj <- Data2fd(argvals,densY, wbasis )
## create matrix of landmarks from curv1Filter peaks
cat("Registering curves for parameter", p, "...\n")
landmarks <- landmarkMatrix(thisX, fres, p, border=clipRange, peakNr=peakNr
, densities=densY, n=nb)
if(inherits(landmarks,"logical")){
if(landmarks==FALSE){
#TODO return the unnormalized data
message("Can't detect any significant landmarks. No normalization performed.")
return(x);
}
}
## check if we remove signal between groups
sig <- 0.05
if(!is.null(grouping)){
if(!grouping %in% names(pData(thisX)))
stop("'", grouping, "' is not a phenoData variable.")
grps <- as.factor(pData(thisX)[,grouping])
anv <- numeric(ncol(landmarks))
for(i in seq_len(ncol(landmarks)))
anv[i] <- anova(lm(landmarks[,i] ~ grps))$Pr[1]
if(any(anv < sig))
warning("Within-group variances are smaller than ",
"across-group variances for stain ", p,
".\nWarping might have removed signal!")
}
## fill NAs with column medians
regions <- attr(landmarks, "regions")
dists <- attr(landmarks, "cdists")
attr(landmarks, "regions") <- NULL
attr(landmarks, "cdists") <- NULL
hasPeak <- !is.na(landmarks)
for(n in 1:ncol(landmarks))
{
nar <- is.na(landmarks[,n])
landmarks[nar,n] <- mean(landmarks[,n], na.rm=TRUE)
reg<-sapply(regions[!nar],function(r) if(is.null(dim(r))) r else r[n,])
if(is(reg, "list")){
reg<-do.call(cbind,reg)
}
m <- matrix(apply(reg,1, mean, na.rm=TRUE), ncol=2)
for(i in names(which(nar)))
regions[[i]][n,] <- m
}
## register the densities
if(ncol(landmarks)==1){ ## only one peak: offset
if(is.null(target)){
offsets <- landmarks-median(landmarks)
names(offsets)<-sampleNames(expData)
}else{
offsets<-landmarks-landmarks[sampleNames(expData)%in%target]
names(offsets)<-sampleNames(expData)
}
funs <- funsBack <- vector("list", length(landmarks))
names(funs)<-samples
names(funsBack)<-samples
for(j in seq_along(funs)){
funs[[samples[[j]]]] <- function(x) x - z
e1 <- new.env(hash=TRUE)
e1$z <- offsets[samples[[j]]]
environment(funs[[samples[[j]]]]) <- e1
funsBack[[samples[[j]]]] <- function(x) x + z
e2 <- new.env(hash=TRUE)
e2$z <- offsets[samples[[j]]]
environment(funsBack[[samples[[j]]]]) <- e2
}
}else{ ## multiple peaks: warping
if(is.null(target)){
capture.output(regDens <- landmarkreg(fdobj, landmarks, WfdPar=WfdPar, monwrd=monwrd,...))
}else{
capture.output(regDens <- landmarkreg(fdobj, landmarks,x0marks= apply(landmarks,2,jitter)[rownames(landmarks)%in%target,], WfdPar=WfdPar, monwrd=monwrd,...))
}
warpfdobj <- regDens$warpfd
warpedX <- eval.fd(warpfdobj, argvals)
warpedX[1,] <- head(argvals,1)
warpedX[nrow(warpedX),] <- tail(argvals,1)
## compute warping functions
## funs <- apply(warpedX, 2, function(y) approxfun(argvals, y))
funs <- apply(warpedX, 2, approxfun, argvals)
funsBack <- apply(warpedX, 2, function(a, b) approxfun(b, a), argvals)
}
names(funs) <- names(funsBack) <- sampleNames(thisX)
if(!warpFuns)
{
warpedLandmarks <- landmarks
leftBoard <- rightBoard <- vector("list",length(funs))
#chunkleftBoard<-chunkrightBoard<-rep(list(length(funs)),max(1:length(funs)%/%chunksize)+1)
newRange <- c(Inf, -Inf)
## transform the raw data using the warping functions
##TODO there may be some speed up to be gained here by using chunks.
chunkgroups<-(1:length(funs))%/%chunksize
chunkfuns<-split(funs,chunkgroups)
chunksamples<-split(samples,chunkgroups)
chunkranges<-split(ranges,chunkgroups)
chunkleftBoard<-split(leftBoard,chunkgroups)
chunkrightBoard<-split(rightBoard,chunkgroups)
chunkindices<-split(1:length(funs),chunkgroups)
for(k in seq_along(chunkfuns)){
thisChunksample <- chunksamples[[k]]
thisChunkFuns <- chunkfuns[[k]]
thisChunkRanges <- chunkranges[[k]]
# thisChunkleftBoard <- chunkleftBoard[[k]]
# thisChunkrightBoard <- chunkrightBoard[[k]]
thischunkindices <- chunkindices[[k]]
for(i in seq_along(thisChunkFuns)){
message("normalizing sample ",(k-1)*chunksize+i);
curChunkRange <- thisChunkRanges[[i]]
# curChunkleftBoard <- thisChunkleftBoard[[i]]
# curChunkrightBoard <- thisChunkrightBoard[[i]]
curChunksample <- thisChunksample[[i]]
curChunkFun <- thisChunkFuns[[curChunksample]]
curChunkindices <- thischunkindices[[i]]
curfr <- get_cytoframe_from_cs(expData, curChunksample)[,p]
curData <- exprs(curfr)[,,drop = TRUE]
lb <- curData < curChunkRange[1,p]+eps
lb[is.na(lb)] <- TRUE
# curChunkleftBoard <- lb
rb <- curData > curChunkRange[2,p]-eps
rb[is.na(rb)] <- TRUE
# curChunkrightBoard <- rb
#we no longer exclude things beyond the range
#sel <- leftBoard[[i]] | rightBoard[[i]]
# newDat <- curChunkFun(curData[!sel])
# newDat[is.na(newDat)] <- curData[!sel][is.na(newDat)]
newDat <- curChunkFun(curData)
naDatInd <- is.na(newDat)
newDat[naDatInd] <- curData[naDatInd]
warpedLandmarks[curChunkindices, ] <- curChunkFun(landmarks[curChunkindices,])
newRange[1] <- curChunkRange[,p][1]
newRange[2] <- curChunkRange[,p][2]
#Writing after normalization
exprs(curfr)[,p] <- newDat
#take advantage of channel-wise write to cdf (instead of entire frame)
## make sure that edge envents are set to the extreme values
## of the warped data range and update the parameters slot
## accordingly
tmp <- parameters(curfr)
oldRanges <- unlist(range(curfr))
ip <- match(p, pData(tmp)[,"name"])
pData(parameters(curfr))[ip, c("minRange", "maxRange")] <- c(min(oldRanges[1], newRange[1])
,max(oldRanges[2], newRange[2])
)
}
}
lm[[p]] <- list(prior=landmarks, warped=warpedLandmarks,
warpFun=funs, regions=regions, dists=dists,
hasPeak=hasPeak, revWarpFuns=funsBack)
}
}
if(warpFuns)
return(funs)
expData
}
# When isNew == FALSE, the original cdf is modified
# when isNew == TRUE, a new cdf is created
warpSet.ncdfFlowSet <- function(x, stains, grouping=NULL, monwrd=TRUE, subsample=NULL,
peakNr=NULL, clipRange=0.01, nbreaks=11, fres, bwFac=2,
warpFuns=FALSE,target=NULL,chunksize=10,isNew=FALSE,newNcFile=NULL,
...)
{
## Some type-checking first
flowCore:::checkClass(x, "flowSet")
flowCore:::checkClass(stains, "character")
mt <- stains %in% colnames(x)
if(!all(mt))
stop("Invalid stain(s) not matching the flowSet:\n ",
paste(stains[!mt], collapse=", "))
#expData should now be x...
if(isNew){
expData <- clone.ncdfFlowSet(x,isNew=TRUE,isEmpty=FALSE,ncdfFile=newNcFile)
}else{
expData <- x;
}
samples <- sampleNames(expData)
ranges <- lapply(samples, function(sn)range(x[[sn, use.exprs = FALSE]]))
if(!is.null(grouping))
flowCore:::checkClass(grouping, "character", 1)
if(!is.null(subsample))
{
flowCore:::checkClass(subsample, "numeric", 1)
## subsample data set before all density estimation steps
#Does Subset clobber anything in a permanent way for an ncdfFlowSet? Check this, otherwise use subsample.
x <- Subset(x, sampleFilter(size=subsample))
}
flowCore:::checkClass(monwrd, "logical", 1)
flowCore:::checkClass(bwFac, "numeric", 1)
## find landmarks
if(missing(fres))
{
fres <- list()
for(p in stains)
{
cat("\rEstimating landmarks for channel", p, "...")
fres[[p]] <- filter(x[,p], curv1Filter(p, bwFac=bwFac))
}
cat("\n")
}
else
{
if(!is.list(fres) || !all(stains %in% names(fres)))
stop("The supplied list of filter results does not match ",
"the channels to warp.")
if(!all(sapply(fres, is, "filterResult")))
stop("The argument 'fres' has to be a list of filterResultLists.")
cat("Extracting landmarks from user supplied filterResults\n")
}
## define some variables
nb <- 1001
lm <- list()
z <- NULL
## iterate over stains
eps <- .Machine$double.eps
for(p in stains)
{
thisX <- x[,p]
## set up fda parameters
extend <- 0.15
from <- min(sapply(ranges, function(z) z[1,p]-diff(z[,p])*extend), na.rm=TRUE)
to <- max(sapply(ranges, function(z) z[2,p]+diff(z[,p])*extend), na.rm=TRUE)
wbasis <- create.bspline.basis(rangeval=c(from, to),
norder=4, breaks=seq(from, to, len=nbreaks))
WfdPar <- fdPar(wbasis, 1, 1e-4)
densY <- t(fsApply(thisX, function(z){
r <- range(z)[,p]
z <- exprs(z)
z <- z[z[,p]>r[1]+eps & z[,p]<r[2]-eps, p]
density(z, from=from, to=to, n=nb, na.rm=TRUE)$y
}))
argvals <- seq(from, to, len=nb)
fdobj <- Data2fd(argvals,densY, wbasis )
## create matrix of landmarks from curv1Filter peaks
cat("Registering curves for parameter", p, "...\n")
landmarks <- landmarkMatrix(thisX, fres, p, border=clipRange, peakNr=peakNr
, densities=densY, n=nb)
if(inherits(landmarks,"logical")){
if(landmarks==FALSE){
#TODO return the unnormalized data
message("Can't detect any significant landmarks. No normalization performed.")
return(x);
}
}
## check if we remove signal between groups
sig <- 0.05
if(!is.null(grouping)){
if(!grouping %in% names(pData(thisX)))
stop("'", grouping, "' is not a phenoData variable.")
grps <- as.factor(pData(thisX)[,grouping])
anv <- numeric(ncol(landmarks))
for(i in seq_len(ncol(landmarks)))
anv[i] <- anova(lm(landmarks[,i] ~ grps))$Pr[1]
if(any(anv < sig))
warning("Within-group variances are smaller than ",
"across-group variances for stain ", p,
".\nWarping might have removed signal!")
}
## fill NAs with column medians
regions <- attr(landmarks, "regions")
dists <- attr(landmarks, "cdists")
attr(landmarks, "regions") <- NULL
attr(landmarks, "cdists") <- NULL
hasPeak <- !is.na(landmarks)
for(n in 1:ncol(landmarks))
{
nar <- is.na(landmarks[,n])
landmarks[nar,n] <- mean(landmarks[,n], na.rm=TRUE)
reg<-sapply(regions[!nar],function(r) if(is.null(dim(r))) r else r[n,])
if(is(reg, "list")){
reg<-do.call(cbind,reg)
}
m <- matrix(apply(reg,1, mean, na.rm=TRUE), ncol=2)
for(i in names(which(nar)))
regions[[i]][n,] <- m
}
## register the densities
if(ncol(landmarks)==1){ ## only one peak: offset
if(is.null(target)){
offsets <- landmarks-median(landmarks)
names(offsets)<-sampleNames(expData)
}else{
offsets<-landmarks-landmarks[sampleNames(expData)%in%target]
names(offsets)<-sampleNames(expData)
}
funs <- funsBack <- vector("list", length(landmarks))
names(funs)<-samples
names(funsBack)<-samples
for(j in seq_along(funs)){
funs[[samples[[j]]]] <- function(x) x - z
e1 <- new.env(hash=TRUE)
e1$z <- offsets[samples[[j]]]
environment(funs[[samples[[j]]]]) <- e1
funsBack[[samples[[j]]]] <- function(x) x + z
e2 <- new.env(hash=TRUE)
e2$z <- offsets[samples[[j]]]
environment(funsBack[[samples[[j]]]]) <- e2
}
}else{ ## multiple peaks: warping
if(is.null(target)){
capture.output(regDens <- landmarkreg(fdobj, landmarks, WfdPar=WfdPar, monwrd=monwrd,...))
}else{
capture.output(regDens <- landmarkreg(fdobj, landmarks,x0marks= apply(landmarks,2,jitter)[rownames(landmarks)%in%target,], WfdPar=WfdPar, monwrd=monwrd,...))
}
warpfdobj <- regDens$warpfd
warpedX <- eval.fd(warpfdobj, argvals)
warpedX[1,] <- head(argvals,1)
warpedX[nrow(warpedX),] <- tail(argvals,1)
## compute warping functions
## funs <- apply(warpedX, 2, function(y) approxfun(argvals, y))
funs <- apply(warpedX, 2, approxfun, argvals)
funsBack <- apply(warpedX, 2, function(a, b) approxfun(b, a), argvals)
}
names(funs) <- names(funsBack) <- sampleNames(thisX)
if(!warpFuns)
{
warpedLandmarks <- landmarks
leftBoard <- rightBoard <- vector("list",length(funs))
#chunkleftBoard<-chunkrightBoard<-rep(list(length(funs)),max(1:length(funs)%/%chunksize)+1)
newRange <- c(Inf, -Inf)
## transform the raw data using the warping functions
##TODO there may be some speed up to be gained here by using chunks.
chunkgroups<-(1:length(funs))%/%chunksize
chunkfuns<-split(funs,chunkgroups)
chunksamples<-split(samples,chunkgroups)
chunkranges<-split(ranges,chunkgroups)
chunkleftBoard<-split(leftBoard,chunkgroups)
chunkrightBoard<-split(rightBoard,chunkgroups)
chunkindices<-split(1:length(funs),chunkgroups)
for(k in seq_along(chunkfuns)){
thisChunksample <- chunksamples[[k]]
thisChunkFuns <- chunkfuns[[k]]
thisChunkRanges <- chunkranges[[k]]
# thisChunkleftBoard <- chunkleftBoard[[k]]
# thisChunkrightBoard <- chunkrightBoard[[k]]
thischunkindices <- chunkindices[[k]]
for(i in seq_along(thisChunkFuns)){
message("normalizing sample ",(k-1)*chunksize+i);
curChunkRange <- thisChunkRanges[[i]]
# curChunkleftBoard <- thisChunkleftBoard[[i]]
# curChunkrightBoard <- thisChunkrightBoard[[i]]
curChunksample <- thisChunksample[[i]]
curChunkFun <- thisChunkFuns[[curChunksample]]
curChunkindices <- thischunkindices[[i]]
curfr <- expData[,p][[curChunksample]]
curData <- exprs(curfr)[,,drop = TRUE]
lb <- curData < curChunkRange[1,p]+eps
lb[is.na(lb)] <- TRUE
# curChunkleftBoard <- lb
rb <- curData > curChunkRange[2,p]-eps
rb[is.na(rb)] <- TRUE
# curChunkrightBoard <- rb
#we no longer exclude things beyond the range
#sel <- leftBoard[[i]] | rightBoard[[i]]
# newDat <- curChunkFun(curData[!sel])
# newDat[is.na(newDat)] <- curData[!sel][is.na(newDat)]
newDat <- curChunkFun(curData)
naDatInd <- is.na(newDat)
newDat[naDatInd] <- curData[naDatInd]
warpedLandmarks[curChunkindices, ] <- curChunkFun(landmarks[curChunkindices,])
newRange[1] <- curChunkRange[,p][1]
newRange[2] <- curChunkRange[,p][2]
#Writing after normalization
exprs(curfr)[,p] <- newDat
#take advantage of channel-wise write to cdf (instead of entire frame)
destDat <- expData[,p]
destDat[[curChunksample]] <- curfr
## make sure that edge envents are set to the extreme values
## of the warped data range and update the parameters slot
## accordingly
srcFr <- expData[[curChunksample, use.exprs = FALSE]]
# minSel <- curChunkleftBoard
# maxSel <- curChunkrightBoard
tmp <- parameters(srcFr)
oldRanges <- unlist(range(curfr))
ip <- match(p, pData(tmp)[,"name"])
pData(tmp)[ip, c("minRange", "maxRange")] <- c(min(oldRanges[1], newRange[1])
,max(oldRanges[2], newRange[2])
)
parameters(expData@frames[[curChunksample]]) <- tmp
}
}
lm[[p]] <- list(prior=landmarks, warped=warpedLandmarks,
warpFun=funs, regions=regions, dists=dists,
hasPeak=hasPeak, revWarpFuns=funsBack)
}
}
if(warpFuns)
return(funs)
expData
}
#
warpSet.flowSet <- function(x, stains, grouping=NULL, monwrd=TRUE, subsample=NULL,
peakNr=NULL, clipRange=0.01, nbreaks=11, fres, bwFac=2,
warpFuns=FALSE,target=NULL,
...)
{
## Some type-checking first
flowCore:::checkClass(x, "flowSet")
flowCore:::checkClass(stains, "character")
mt <- stains %in% colnames(x)
if(!all(mt))
stop("Invalid stain(s) not matching the flowSet:\n ",
paste(stains[!mt], collapse=", "))
expData <- as(x, "list") #Delete for ncdfFlowSet
ranges <- fsApply(x, range)
if(!is.null(grouping))
flowCore:::checkClass(grouping, "character", 1)
if(!is.null(subsample))
{
flowCore:::checkClass(subsample, "numeric", 1)
## subsample data set before all density estimation steps
x <- Subset(x, sampleFilter(size=subsample))
}
if(!is.null(grouping)){
if(!grouping %in% names(pData(x)))
stop("'", grouping, "' is not a phenoData variable.")
}
flowCore:::checkClass(monwrd, "logical", 1)
flowCore:::checkClass(bwFac, "numeric", 1)
## find landmarks
if(missing(fres))
{
fres <- list()
for(p in stains){
cat("\rEstimating landmarks for channel", p, "...")
fres[[p]] <- filter(x, curv1Filter(p, bwFac=bwFac))
}
cat("\n")
}
else
{
if(!is.list(fres) || !all(stains %in% names(fres)))
stop("The supplied list of filter results does not match ",
"the channels to warp.")
if(!all(sapply(fres, is, "filterResult")))
stop("The argument 'fres' has to be a list of filterResultLists.")
cat("Extracting landmarks from user supplied filterResults\n")
}
## define some variables
nb <- 1001
lm <- list()
z <- NULL
## iterate over stains
eps <- .Machine$double.eps
for(p in stains)
{
## set up fda parameters
extend <- 0.15
from <- min(sapply(ranges, function(z) z[1,p]-diff(z[,p])*extend), na.rm=TRUE)
to <- max(sapply(ranges, function(z) z[2,p]+diff(z[,p])*extend), na.rm=TRUE)
# browser()
wbasis <- create.bspline.basis(rangeval=c(from, to),
norder=4, breaks=seq(from, to, len=nbreaks))
WfdPar <- fdPar(wbasis, 1, 1e-4)
densY <- t(fsApply(x, function(z){
r <- range(z)[,p]
z <- exprs(z)
z <- z[z[,p]>r[1]+eps & z[,p]<r[2]-eps, p]
density(z, from=from, to=to, n=nb, na.rm=TRUE)$y
}))
argvals <- seq(from, to, len=nb)
fdobj <- Data2fd( argvals,densY, wbasis)
#argnames = c("x", "samples", "density"))
## create matrix of landmarks from curv1Filter peaks
cat("Registering curves for parameter", p, "...\n")
landmarks <- landmarkMatrix(x, fres, p, border=clipRange, peakNr=peakNr,
densities=densY, n=nb)
#check if the landmarks are valid (sometimes none are significant)
if(inherits(landmarks,"logical")){
if(landmarks==FALSE){
#TODO return the unnormalized data
message("Can't detect any significant landmarks. No normalization performed.")
return(x);
}
}
## check if we remove signal between groups
sig <- 0.05
if(!is.null(grouping)){
if(!grouping %in% names(pData(x)))
stop("'", grouping, "' is not a phenoData variable.")
grps <- as.factor(pData(x)[,grouping])
anv <- numeric(ncol(landmarks))
for(i in seq_len(ncol(landmarks))){
grps_present <- unique(grps[!is.na(landmarks[,i])])
if(length(grps_present == 1)){
warning(paste0("The following landmark is only present in a single group --",
"\nstain: ", p,
"\nmean value: ", mean(landmarks[!is.na(landmarks[,i]),i])))
anv[i] = 1.0 # pass the variance check below to avoid double warning
}else{
anv[i] <- anova(lm(landmarks[,i] ~ grps))$Pr[1]
}
}
if(any(anv < sig))
warning("Within-group variances are smaller than ",
"across-group variances for stain ", p,
".\nWarping might have removed signal!")
}
## fill NAs with column medians
regions <- attr(landmarks, "regions")
dists <- attr(landmarks, "cdists")
attr(landmarks, "regions") <- NULL
attr(landmarks, "cdists") <- NULL
hasPeak <- !is.na(landmarks)
for(n in 1:ncol(landmarks))
{
nar <- is.na(landmarks[,n])
landmarks[nar,n] <- mean(landmarks[,n], na.rm=TRUE)
reg<-sapply(regions[!nar],function(r) if(is.null(dim(r))) r else r[n,])
if(is(reg, "list")){
reg<-do.call(cbind,reg)
}
m <- matrix(apply(reg,1, mean, na.rm=TRUE), ncol=2)
for(i in names(which(nar)))
regions[[i]][n,] <- m
}
## register the densities
if(ncol(landmarks)==1){ ## only one peak: offset
if(is.null(target)){
offsets <- landmarks-median(landmarks)
}else{
#TODO BUG names(expData doesn't match target name)
offsets<-landmarks-landmarks[names(expData)%in%target]
}
funs <- funsBack <- vector("list", length(landmarks))
for(j in seq_along(funs)){
funs[[j]] <- function(x) x - z
e1 <- new.env(hash=TRUE)
e1$z <- offsets[j]
environment(funs[[j]]) <- e1
funsBack[[j]] <- function(x) x + z
e2 <- new.env(hash=TRUE)
e2$z <- offsets[j]
environment(funsBack[[j]]) <- e2
}
}else{ ## multiple peaks: warping
if(is.null(target)){
capture.output(regDens <- landmarkreg(fdobj, landmarks, WfdPar=WfdPar,
monwrd=monwrd, ...))
}else{
#add a small amount of noise 1% of sd (robust) to the target landmarks
capture.output(regDens <- landmarkreg(fdobj, landmarks, x0marks=apply(landmarks,2,jitter)[rownames(landmarks)%in%target,],WfdPar=WfdPar,
monwrd=monwrd, ...))
}
warpfdobj <- regDens$warpfd
warpedX <- eval.fd(warpfdobj, argvals)
warpedX[1,] <- head(argvals,1)
warpedX[nrow(warpedX),] <- tail(argvals,1)
## compute warping functions
## funs <- apply(warpedX, 2, function(y) approxfun(argvals, y))
funs <- apply(warpedX, 2, approxfun, argvals)
funsBack <- apply(warpedX, 2, function(a, b) approxfun(b, a), argvals)
}
names(funs) <- names(funsBack) <- sampleNames(x)
if(!warpFuns)
{
warpedLandmarks <- landmarks
leftBoard <- rightBoard <- list(length(funs))
newRange <- c(Inf, -Inf)
## transform the raw data using the warping functions
for(i in seq_along(funs)){
thisDat <- exprs(expData[[i]][,p])
lb <- thisDat < ranges[[i]][1,p]+eps
lb[is.na(lb)] <- TRUE
leftBoard[[i]] <- lb
rb <- thisDat > ranges[[i]][2,p]-eps
rb[is.na(rb)] <- TRUE
rightBoard[[i]] <- rb
#Include ALL data, none of this thresholding crap at borders.
sel <- leftBoard[[i]] | rightBoard[[i]]
#sel<-rep(FALSE,length(thisDat))
#browser();
newDat <- as.matrix(funs[[i]](thisDat[!sel,]))
newDat[is.na(newDat)] <- thisDat[!sel,][is.na(newDat)]
exprs(expData[[i]])[!sel,p] <- newDat
warpedLandmarks[i, ] <- funs[[i]](landmarks[i,])
newRange[1] <- min(newRange[1], min(exprs(expData[[i]])[,p], na.rm=TRUE))
newRange[2] <- max(newRange[2], max(exprs(expData[[i]])[,p], na.rm=TRUE))
}
## make sure that edge envents are set to the extreme values
## of the warped data range and update the parameters slot
## accordingly
for(i in seq_along(funs)){
minSel <- leftBoard[[i]]
maxSel <- rightBoard[[i]]
exprs(expData[[i]])[minSel,p] <- as.matrix(rep(newRange[1],
sum(minSel, na.rm=TRUE)),
ncol=1)
exprs(expData[[i]])[maxSel,p] <- as.matrix(rep(newRange[2],
sum(maxSel, na.rm=TRUE)),
ncol=1)
ip <- match(p, pData(parameters(expData[[i]]))$name)
tmp <- parameters(expData[[i]])
oldRanges <- unlist(range(expData[[i]])[,p])
pData(tmp)[ip, c("minRange", "maxRange")] <- c(min(oldRanges[1], newRange[1]),
max(oldRanges[2], newRange[2]))
expData[[i]]@parameters <- tmp
}
lm[[p]] <- list(prior=landmarks, warped=warpedLandmarks,
warpFun=funs, regions=regions, dists=dists,
hasPeak=hasPeak, revWarpFuns=funsBack)
}
}
if(warpFuns)
return(funs)
regSet <- as(expData, "flowSet")
phenoData(regSet) <- phenoData(x)
regSet <- regSet[sampleNames(x)]
attr(regSet, "warping") <- lm
# if we have set a target, assign the original data back to the target, we don't really want to warp the target itself.
if (!is.null(target)) {
regSet[[target]] <- x[[target]]
}
regSet
}
## Some QA pots for a normalized data set
normQA <- function(data, morph=c("^fsc", "^ssc"), channels,
odat=NULL, ask=names(dev.cur())!="pdf",
grouping=NULL, tag.outliers=FALSE,
peaksOnly=TRUE)
{
if(! "warping" %in% names(attributes(data)))
stop("This flowSet has not been normalized.")
fsc <- grep(morph[1], colnames(data), ignore.case=TRUE)
if(length(fsc)) fsc <- colnames(data)[min(fsc)] else
stop("No parameter matching regular expression '", morph[1], "'.\n",
"Please provide a valid backgating channel.")
ssc <- grep(morph[2], colnames(data), ignore.case=TRUE)
if(length(ssc)) ssc <- colnames(data)[min(ssc)] else
stop("No parameter matching regular expression '", morph[2], "'\n",
"Please provide a valid backgating channel.")
ninfo <- attr(data, "warping")
wchans <- if(missing(channels)) names(ninfo) else channels
if(!all(wchans %in% names(ninfo)))
stop("No normalization information available for one or more channels.")
if(is.null(grouping))
{
grouping <- factor(rep(1, length(data)))
}
else
{
if(is.character(grouping)){
if(! grouping %in% names(pData(data)))
stop("'grouping' must be a covariate in the phenoData slot of ",
"'data' or a factor of the same length as 'data'.")
grouping <- factor(pData(data)[,grouping])
}
else
{
grouping <- factor(grouping)
}
if(length(grouping) != length(data))
stop("'grouping' must be a covariate in the phenoData slot of ",
"'data' or a factor of the same length as 'data'.")
}
## Plot the amount of warping for each landmark.
if(all(c("prior", "warped", "hasPeak") %in% names(ninfo[[1]])))
{
## We first create a dataFrame ameanable for trellis graphics.
prior <- data.frame()
m <- lapply(ninfo, function(x) apply(x$warped, 2, mean, na.rm=TRUE))
for(p in wchans)
{
pr <- ninfo[[p]]$prior
hp <- ninfo[[p]]$hasPeak
nc <- ncol(pr)
nr <- nrow(pr)
peak <- factor(rep(seq_len(nc), each=nr))
present <- sapply(split(hp, peak), function(x)
sprintf("(%d/%d)", sum(x), nr))
peakLong <- factor(paste(peak, present[peak]))
prior <- rbind(prior,
data.frame(sample=factor(sampleNames(data),
levels=sampleNames(data)),
group=factor(as.integer(grouping)),
value=as.vector(pr),
peak=peak, peakLong=peakLong,
channel=factor(p),
hasPeak=as.vector(hp),
dists=if(length(ninfo[[p]]$dists))
1-as.vector(ninfo[[p]]$dists) else NA))
sel <- is.na(prior$value)
prior[sel, "value"] <- m[[p]][prior[sel, "peak"]]
}
## A regular stripplot with dotted lines extending from the
## adjusted landmark positions for each peak.
par(ask=ask)
on.exit(par(ask=FALSE))
myPanelStrip <- function(x,y, groupMeans, datSet, groups, ng, ...)
{
chan <- levels(datSet$channel)[panel.number()]
thisP <- datSet[datSet$channel==chan,]
nc <- length(groupMeans[[chan]])
nr <- nlevels(y)
col <- rep(trellis.par.get("superpose.symbol")$col[seq_len(ng)], ng)
pch <- if(ng==1) rep(c(4,20), 2) else rep(c(4, 20), each=ng)
panel.abline(v=groupMeans[[chan]], lty="dotted", col="gray")
for(i in seq_len(nc)){
peak <- thisP[thisP$peak==i,"value"]
panel.segments(y0=seq_len(nr), y1=seq_len(nr), x0=peak,
x1=groupMeans[[chan]][i], col="gray", lty="dotted")
}
panel.stripplot(x,y, pch=pch, col=col, groups=groups, ...)
}
col <- trellis.par.get("superpose.symbol")$col[seq_len(nlevels(prior$group))]
ng <- nlevels(prior$group)
key <- list()
if(ng>1)
key <- append(key, list(points=list(col=col, pch=20),
text=list(paste("Group", levels(grouping)))))
if(!all(prior$hasPeak))
key <- append(key, list(points=list(pch=4, col=1),
text=list("no peak detected"),
rep=FALSE))
print(stripplot(sample~value|channel, prior, ng=ng,
groups=interaction(group, hasPeak),
panel=myPanelStrip, groupMeans=m, datSet=prior, xlab=NULL,
key=if(length(key)) c(key, cex=0.8, between=1) else NULL,
main="Amount of Landmark Adjustment\n"))
}
## Plot the confidence of the landmark registration step
if("dists" %in% names(ninfo[[1]]))
{
present <- lapply(split(prior, prior$channel), function(x)
sapply(split(x$hasPeak, x$peak), function(x)
sprintf("(%d/%d)", sum(x), length(data))))
col <- trellis.par.get("superpose.symbol")$col[seq_len(nlevels(prior$group))]
key <- list()
ng <- nlevels(prior$group)
if(ng>1)
key <- append(key, list(text=list(paste("Group", levels(grouping))),
points=list(col=col, pch=1)))
print(stripplot(dists~peak |channel, prior, ylim=c(0,1.1),
ylab="Clustering Confidence", xlab="Peak",
groups=group, myLabel=present,
panel=function(myLabel, datSet, ...){
panel.stripplot(...)
chan <- levels(datSet$channel)[panel.number()]
panel.text(seq_along(myLabel[[chan]]), 1.05, myLabel[[chan]],
cex=0.7)
panel.abline(h=1, col="gray")
}, datSet=prior,
key=if(length(key)) c(key, cex=0.8) else NULL,
main="Landmark Registration\n"))
}
## Plot the warping functions.
if("warpFun" %in% names(ninfo[[1]]))
{
## We first create a dataFrame for the trellis plotting
wfRes <- data.frame()
for(p in wchans)
{
np <- 30
xvals <- seq(range(data[[1]])[, p][1], range(data[[1]])[, p][2], len=np)
yvals <- sapply(ninfo[[p]]$warpFun, function(fun) fun(xvals))
wfRes <- rbind(wfRes,
data.frame(sample=rep(factor(sampleNames(data),
levels=sampleNames(data)),
each=np),
group=rep(factor(as.integer(grouping)),each=np),
original=xvals, normalized=as.vector(yvals),
channel=p))
}
col <- trellis.par.get("superpose.symbol")$col[seq_len(nlevels(wfRes$group))]
key <- list()
ng <- nlevels(wfRes$group)
if(ng>1)
key <- append(key, list(text=list(paste("Group", levels(grouping))),
lines=list(col=col, pch=1)))
print(xyplot(normalized~original|channel, wfRes, type="l", alpha=0.4,
main="Warping Functions\n", groups=group,
key=if(length(key)) c(key, cex=0.8) else NULL))
}
## Plot the projection in the FCS vs. SSC space.
if("regions" %in% names(ninfo[[1]]))
{
## We first create rectangleGates from the peak regions and
## compute norm2Filters in the backgating dimensions
cat("Computing the backgating information. Please wait...")
backGates <- cents <- vector(mode="list", length=length(wchans))
names(backGates) <- names(cents) <- wchans
stand <- apply(range(data[[1]])[,c(fsc, ssc)], 2, diff)
vars <- data.frame()
noOdat <- !is.null(ninfo[[1]]$warpFun) && is.null(odat)
if(!noOdat && is.null(odat))
stop("The un-nomalized data set needs to be supplied as argument 'odat'.")
if(noOdat)
odat <- flowCore:::copyFlowSet(data)
for(p in wchans)
{
regions <- ninfo[[p]]$regions
if(is.null(names(regions)))
names(regions) <- sampleNames(data)
wfuns <- if(noOdat) ninfo[[p]]$warpFun else {
wf <- list()
for(n in names(regions))
wf[[n]] <- function(x) x
wf}
np <- ncol(ninfo[[p]]$warped)
bg <- cs <- vector(mode="list", length=np)
for(i in seq_len(np))
{
g <- list()
for(j in names(regions))
{
g[[j]] <- if(ninfo[[p]]$hasPeak[which(sampleNames(data)==j),i])
rectangleGate(matrix(wfuns[[j]](regions[[j]][i,]), ncol=1,
dimnames=list(NULL, p)))
else rectangleGate(matrix(c(-Inf, Inf), ncol=1,
dimnames=list(NULL, p)))
}
subDat <- Subset(Subset(odat, filterList(g)), boundaryFilter(c(fsc, ssc)))
hp <- ninfo[[p]]$hasPeak[,i]
bg[[i]] <- filter(subDat, norm2Filter(c(fsc, ssc)))
bg[[i]][fsApply(subDat, nrow)<30] <- NA
cs[[i]] <- fsApply(subDat, function(x){
if(nrow(x)>30)
apply(x[,c(fsc, ssc)], 2, mean, na.rm=TRUE)
else as.numeric(rep(NA,2))}, use.exprs=TRUE)
if(peaksOnly)
{
bg[[i]][!hp] <- NA
cs[[i]][!hp] <- rep(NA,2)
}
vars <- rbind(vars,
data.frame(value=sapply(bg[[i]], function(x)
if(is(x, "filterResult") && !is.na(filterDetails(x)[[1]]$cov) &&
length(x@subSet) > 30 )
prod(sqrt(eigen(filterDetails(x)[[1]]$cov)$values)/stand)*pi
else NA),
channel=p, peak=factor(paste("Peak", i)),
sample=factor(sampleNames(data),
levels=sampleNames(data))))
}
backGates[[p]] <- bg
cents[[p]] <- cs
}
dummy <- data.frame(channel=factor(rep(names(backGates),
times=length(data)*listLen(backGates))),
peak=factor(unlist(sapply(listLen(backGates),
function(x)
rep(seq_len(x),
each=length(data))))),
sample=factor(sampleNames(data), levels=sampleNames(data)),
group=factor(as.integer(grouping)),
x=0, y=0)
cat("\n")
myXYPanel <- function(datSet, backGates, groups, ...)
{
wp <- which.packet()
p <- levels(datSet$channel)[wp[1]]
ng <- nlevels(groups)
bg <- backGates[[p]]
if(length(wp)==2)
bg <- bg[wp[2]]
for(i in seq_along(bg))
{
crgb <- col2rgb(trellis.par.get("superpose.symbol")$col[as.integer(groups)])
col <- rgb(t(crgb), alpha=255*0.12, maxColorValue=255)
colc <- rgb(t(crgb), alpha=255*0.2, maxColorValue=255)
for(f in seq_along(bg[[i]]))
if(is(bg[[i]][[f]], "filterResult") &&
!is.na(filterDetails(bg[[i]][[f]])[[1]]$cov) &&
length(bg[[i]][[f]]@subSet) > 30 )
glpolygon(bg[[i]][[f]], gpar=list(gate=list(fill=col[f],
col=colc[f])))
}
}
flowViz:::plotType("gsmooth", c(fsc, ssc))
key <- list()
ng <- nlevels(dummy$group)
col <- trellis.par.get("superpose.symbol")$col[seq_len(ng)]
if(ng>1)
key <- append(key, list(text=list(paste("Group", levels(grouping))),
rectangles=list(col=col, pch=1)))
print(xyplot(x~y|channel+factor(paste("Peak", peak)), dummy, xlab=fsc, ylab=ssc,
xlim=range(data[[1]])[,fsc], groups=group,
ylim=range(data[[1]])[, ssc],
panel=myXYPanel, datSet=dummy, backGates=backGates,
key=if(length(key)) c(key, cex=0.8) else NULL,
main="Backgating Shape\n"))
## tmp <- sapply(regions, rowMeans)
## expval <- signif(if(!is.null(dim(tmp))) rowMeans(tmp) else mean(tmp),3)
## legend("topleft", pch=20, col=seq_len(nc)+1,
## legend=sprintf("Peak %d (mean %s=%g)", seq_len(nc), p, expval),
## cex=0.8, bty="n")
## Now only plot the centroids of the ellipses
alldat <- Subset(as(odat, "flowFrame")[,c(fsc, ssc)],
boundaryFilter(c(fsc, ssc)) %subset%
sampleFilter(10000))
myXYPanelCent <- function(datSet, centroids, alldat, labels, groups, ...)
{
wp <- which.packet()
p <- levels(datSet$channel)[wp[1]]
ct <- centroids[[p]]
if(length(wp)==2)
ct <- ct[wp[2]]
exp <- exprs(alldat)[,1:2]
xr <- range(exp, na.rm=TRUE)[,1]
yr <- range(exp, na.rm=TRUE)[,2]
bw <- diff(apply(exp, 2, quantile, probs=c(0.05, 0.95),
na.rm=TRUE)) / 25
range <- list(xr+c(-1,1)*bw[1]*2.5, yr+c(-1,1)*bw[2]*2.5)
z <- bkde2D(exp, bw, c(65,65), range.x=range)
ll <- contourLines(z$x1, z$x2, z$fhat, nlevels=10)
for(pg in ll)
panel.polygon(pg$x, pg$y, border="lightgray")
col <- trellis.par.get("superpose.symbol")$col[as.integer(groups)]
for(i in seq_along(ct))
{
panel.points(ct[[i]], col=col, pch=i)
if(tag.outliers)
{
tg <- subset(datSet, channel==p & peak==i)$group
x <- split(ct[[i]][,1], tg)
y <- split(ct[[i]][,2], tg)
outliers <- unlist(mapply(function(xx, yy){
tmp <- cbind(xx, yy)
sel <- apply(tmp, 1, function(z) any(is.na(z)))
res <- rep(FALSE, nrow(tmp))
ol <- !pcout(tmp[!sel,], outbound=0.1)$wfinal01
res[!sel] <- ol
return(res)}, x, y, SIMPLIFY=FALSE))
panel.text(ct[[i]][,1][outliers], ct[[i]][,2][outliers],
labels[outliers], adj=c(1.5,1.5), cex=0.6)
}
}
}
key <- list()
np <- nlevels(dummy$peak)
if(ng>1 || np>1)
{
labs <- as.character(levels(interaction(paste("Group", levels(grouping)),
paste("Peak", levels(dummy$peak)),
sep=" ")))
key <- append(key, list(text=list(labs),
points=list(col=rep(col, nlevels(grouping)),
pch=rep(seq_len(nlevels(dummy$peak)),
each=nlevels(grouping))),
columns=ng))
}
print(xyplot(x~y|channel, dummy, xlab=fsc, ylab=ssc,
xlim=range(data[[1]])[,fsc], groups=group,
ylim=range(data[[1]])[, ssc],
panel=myXYPanelCent, datSet=dummy, centroids=cents,
main="Backgating Location\n", alldat=alldat, labels=sampleNames(data),
key=if(length(key)) c(key, cex=0.8) else NULL))
cvSum <- data.frame()
for(i in seq_along(cents))
for(j in seq_along(cents[[i]]))
{
mc <- apply(cents[[i]][[j]], 2, median, na.rm=TRUE)
md <- t(cents[[i]][[j]]) - mc
mds <- colMeans(md/stand)
cvSum <- rbind(cvSum, data.frame(sample=factor(names(mds),
levels=unique(names(mds))),
group=factor(as.integer(grouping)),
channel=wchans[[i]],
peak=factor(paste("Peak",j)),
location=mds))
}
cvSum <- cbind(cvSum, variation=vars[, "value"])
myXYPanelSum <- function(x, y, labels, datSet, groups, ...)
{
wp <- which.packet()
tg <- subset(datSet, channel==levels(factor(datSet$channel))[wp[1]] &
peak==paste("Peak", wp[2]))$group
if(length(x))
{
col <- trellis.par.get("superpose.symbol")$col[as.integer(tg)]
panel.points(x,y, col=col, pch=1)
if(tag.outliers)
{
xs <- split(x, tg)
ys <- split(y, tg)
outliers <- unlist(mapply(function(xx, yy){
tmp <- cbind(xx, yy)
sel <- apply(tmp, 1, function(z) any(is.na(z)))
res <- rep(FALSE, nrow(tmp))
ol <- !pcout(tmp[!sel,], outbound=0.1)$wfinal01
res[!sel] <- ol
return(res)}, xs, ys, SIMPLIFY=FALSE))
col <- trellis.par.get("superpose.symbol")$col[as.integer(tg)]
panel.text(x[outliers], y[outliers], labels[outliers], adj=c(1.5,1.5),
cex=0.6)
}
}
}
key <- list()
col <- trellis.par.get("superpose.symbol")$col[seq_len(ng)]
if(ng>1)
key <- append(key, list(text=list(paste("Group", levels(grouping))),
rectangles=list(col=col, pch=1)))
print(xyplot(location ~ variation|channel+peak, cvSum, panel=myXYPanelSum,
labels=sampleNames(data), main="Backgating Summary\n",
groups=group, datSet=cvSum,
key=if(length(key)) c(key, cex=0.8) else NULL))
}
## Plot the relative ellipse volumes for the backgated channels
## layout(matrix(1:length(wchans), ncol=1))
## for(p in wchans)
## {
## nc <- ncol(ninfo[[p]]$warped)
## nr <- nrow(ninfo[[p]]$warped)
## plot(seq_len(nc), rep(0, nc),
## ylim=c(0,max(5, max(unlist(allV[[p]])))), type="n",
## xlim=c(0, nc+1), xlab="peaks", ylab="variation", xaxt="n",
## pch=pch, col=rep(seq_len(nc), each=nr),
## main=paste("Backgating Variation", p))
## axis(1, at=seq_len(nc), labels=TRUE)
## box()
## for(i in seq_len(nc))
## points(rep(i, nr), allV[[p]][[i]])
## }
invisible()
}
## An optimized object size function that is able to deal with embedded
## environments.
## setGeneric("objectSize", function(x, ...) standardGeneric("objectSize"))
## setMethod("objectSize", signature(x="ANY"), definition=function(x, ...)
## {
## realObjSize <- function(object, size=0, done=list())
## {
## ## recursively go though environments and record the total size
## ## We also pass on pointers to all the environments that have
## ## already been counted in order to avoid infinite loops or
## ## counting things multiple times.
## objSize <- size
## if(is.environment(object) && !any(sapply(done, identical, object)))
## {
## for(i in ls(object))
## objSize <- realObjSize(get(i,object),objSize,
## done=append(done, object))
## }
## else
## {
## objSize <- object.size(object, ...)+size
## }
## ## check if any of the slots are evironments and pass through those
## slots <- slotNames(object)
## envs <- sapply(slots, function(s) is.environment(slot(object, s)))
## for(i in slots[envs])
## objSize <- realObjSize(slot(object,i), objSize, done)
## return(objSize)
## }
## realObjSize(x)
## })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.