Nothing
# Illumina loader utility for load_plat.
#
# Used by load_plat to load an eset.
#
# @param eset Expression set obtained by \code{getGEO}.
# @param gse_name String specifying GSE name.
# @param gse_dir String specifying path to GSE folder.
#
# @seealso \code{\link{load_plat}}.
# @return Annotated eset.
load_illum_plat <- function(eset, gse_name, gse_dir, ensql) {
try(fData(eset)[fData(eset) == ""] <- NA)
try(fData(eset)[] <- lapply(fData(eset), as.character))
# convert .xls to txt
xls_paths <- list.files(gse_dir, pattern = "_supplementary_.*.xlsx?$", full.names = TRUE, ignore.case = TRUE)
xls_to_txt(xls_paths)
# fix header issues
illum_pat <- "^GSM[0-9]+.*txt$|non.*norm.*txt$|raw.*txt$|nonorm.*txt$|_supplementary_.*.txt$"
elist_paths <- list.files(gse_dir, pattern = illum_pat, full.names = TRUE, ignore.case = TRUE)
elist_paths <- elist_paths[!grepl('fixed[.]txt$', elist_paths)]
annotation <- fix_illum_headers(elist_paths, eset)
# load fixed elist paths
elist_paths <- gsub(".txt", "_fixed.txt", elist_paths, fixed = TRUE)
elist <- limma::read.ilmn(elist_paths, probeid = "ID_REF", annotation = annotation)
# make sure samples have distinct names
# e.g. samples in two files from GSE40936 were getting named identically by fix_illum_headers
colnames(elist) <- make.unique(colnames(elist))
# don't correct if already log transformed (already corrected?)
logd <- max(elist$E, na.rm = TRUE) < 100
if (!logd) {
elist <- tryCatch (
limma::neqc(elist),
error = function(c) {
# PMID:19068485 recommends mle and offset 50
elist <- limma::backgroundCorrect(elist, method = "normexp",
normexp.method = "mle",
offset = 50)
return(limma::normalizeBetweenArrays(elist, method = "quantile"))
})
}
# merge eset and elist fdata
elist <- merge_elist(eset, elist)
if ('ID_REF' %in% colnames(elist$genes)) {
row.names(elist$E) <- row.names(elist$genes) <- make.unique(elist$genes$ID_REF)
} else {
row.names(elist$E) <- row.names(elist$genes) <- NULL
}
# determine best sample matches
res <- match_samples(eset, elist)
elist <- elist[, res$elist_order]
eset <- eset[, res$eset_order]
warn <- res$warn
# keep gse matrix and raw elist title
pData(eset)$title.gsemat <- pData(eset)$title
pData(eset)$title.raw <- colnames(elist)
if (warn) {
# use raw elist titles to ensure correct contrasts
pData(eset)$title <- colnames(elist)
# add illum colname to warn about pData
pData(eset)$illum <- NA
}
colnames(elist) <- sampleNames(eset)
# convert limma object to eset
eset <- to_eset(elist, eset)
# add SYMBOL annotation
eset <- symbol_annot(eset, gse_name, ensql)
return(eset)
}
#' Covert .xls files to .txt
#'
#' For converting Illumina _Supplementary_.*.xls files to .txt for load_illum_plat.
#'
#' @param xls_paths Paths to .xls files
#'
#' @return NULL
#' @export
#'
xls_to_txt <- function(xls_paths) {
for (xls_path in xls_paths) {
d <- readxl::read_excel(xls_path)
txt_path <- gsub('.xlsx?$', '.txt', xls_path)
write.table(d, txt_path, sep='\t', quote = FALSE, row.names = FALSE)
}
}
# like base pmatch
# partial match occurs if the whole of the element of x matches any part of the element of table
fuzzy_pmatch <- function(x, table) {
x <- tolower(x)
table <- tolower(table)
# first look for perfect matches
perfect <- match(x, table)
# is every x has a perfect match in table, return
if (sum(is.na(perfect)) == 0) return(perfect)
# otherwise first grep
tomatch <- x[is.na(perfect)]
gmatch <- sapply(tomatch, function(val) {
res <- grep(val, table, fixed = TRUE)[1]
if (!length(res)) return(NA_integer_)
return(res)
})
# fill in grep result where NA in perfect
perfect[is.na(perfect)] <- gmatch[is.na(perfect)]
return(perfect)
}
match_samples <- function(eset, elist) {
# determine if elist has fewer samples
data_fewer <- ncol(elist) < ncol(eset)
# check if colnames match ----
if (data_fewer) {
# check if all elist colnames in eset colnames
if (all(colnames(elist) %in% colnames(eset))) {
cat('Illumina samples matched by column names.\n')
return(list(elist_order = colnames(elist), eset_order = colnames(elist), warn = FALSE))
}
} else {
# check if all eset colnames in elist colnames
if (all(colnames(eset) %in% colnames(elist))) {
cat('Illumina samples matched by column names.\n')
return(list(elist_order = colnames(eset), eset_order = colnames(eset), warn = FALSE))
}
}
# check if eset pdata col matches elist colnames ----
if (!is.null(colnames(elist))) {
# matrix of positions of matches for elist colnames among those for each pdata column
matches <- sapply(Biobase::pData(eset), function(col) {
fuzzy_pmatch(colnames(elist), col)
})
# number of unique non NA matches for each pdata column
nunique <- apply(matches, 2, function(match) length(unique(match[!is.na(match)])))
# number of unique non NA matches should be the min of number of eset or pdata samples
nmin <- min(ncol(eset), ncol(elist))
if (any(nunique == nmin)) {
cat('Illumina samples matched by pdata column.\n')
# matches where satisfied
bestcol <- names(which(nunique == nmin))[1]
matches <- matches[, bestcol]
# elist_order is positions where matches are not NA
elist_order <- which(!is.na(matches))
# eset_order is non NA matches
eset_order <- matches[!is.na(matches)]
return(list(elist_order = elist_order, eset_order = eset_order, warn = FALSE))
}
}
# check if similarity offers unique match ----
# make sure eset is log2 transformed
logd <- max(exprs(eset), na.rm = TRUE) < 1000
if (!logd) {
exprs(eset) <- log2(exprs(eset) + abs(min(exprs(eset), na.rm = TRUE)) + 16)
}
# row names are the best match columns for elist and eset
elist <- elist[!is.na(elist$genes[[elist$elistcol]]), ]
row.names(elist) <- make.unique(elist$genes[[elist$elistcol]])
eset <- eset[!is.na(fData(eset)[[elist$esetcol]]), ]
row.names(eset) <- make.unique(fData(eset)[[elist$esetcol]])
# only include rows without missing values
eset <- eset[stats::complete.cases(exprs(eset)), ]
elist <- elist[stats::complete.cases(elist$E), ]
qres <- list()
ngenes <- min(nrow(eset), nrow(elist))
if (data_fewer) {
# determine most similar eset sample for each sample in elist
for (i in 1:ncol(elist)) {
qsamp <- elist$E[, i]
qres[[colnames(elist)[i]]] <- query_ref(qsamp, exprs(eset), sorted = FALSE, ngenes = ngenes)
}
} else {
# determine most similar elist sample for each sample in eset
for (i in 1:ncol(eset)) {
qsamp <- exprs(eset)[, i]
qres[[colnames(eset)[i]]] <- query_ref(qsamp, elist$E, sorted = FALSE, ngenes = ngenes)
}
}
# eset sample to most similar elist sample
qres <- as.data.frame(qres)
best <- sapply(qres, which.max)
if (length(best) == length(unique(best))) {
cat('Illumina samples matched by similarity.\n')
if (data_fewer) {
elist_order <- colnames(elist)
eset_order <- best
} else {
elist_order <- best
eset_order <- colnames(eset)
}
return(list(elist_order = elist_order, eset_order = eset_order, warn = FALSE))
} else {
# look for misses in non-first query results
dups <- unique(best[duplicated(best)])
misses <- setdiff(1:nrow(qres), unique(best))
n <- nrow(qres)
for (dup in dups) {
# query results for duplicate
i <- 1
qres_dup <- qres[, best == dup]
while (dup %in% dups & i < n) {
ibest_dup <- sapply(qres_dup, function(col) which(col == sort(col, partial=n-i)[n-i]))
# for each miss
for (miss in misses) {
# check if one ibest is miss
imiss <- ibest_dup == miss
if (sum(imiss) == 1){
# if so, replace best with ibest
ibest_repl <- ibest_dup[imiss]
best[names(ibest_repl)] <- ibest_repl
# also update duplicates and misses
dups <- best[duplicated(best)]
misses <- setdiff(1:nrow(qres), unique(best))
# if no more misses, break
if (!length(misses)) {
break()
}
}
}
i <- i + 1
}
}
if (!length(dups)) {
cat('Illumina samples matched by similarity using non-first ranks.\n')
if (data_fewer) {
elist_order <- colnames(elist)
eset_order <- best
} else {
elist_order <- best
eset_order <- colnames(eset)
}
return(list(elist_order = elist_order, eset_order = eset_order, warn = FALSE))
} else {
cat('Illumina samples not matched.\n')
return(list(elist_order = colnames(elist), eset_order = colnames(eset), warn = TRUE))
}
}
}
#' Get correlation between query and reference signatures.
#'
#' Determines the pearson correlation between the query and each reference signature.
#'
#' @param query Named numeric vector of differentual expression values for
#' query genes. Usually 'meta' slot of \code{get_dprimes} result.
#' @param ref A matrix of differential expression
#' to query against (rows are genes, columns are samples).
#' @param sorted Would you like the results sorted by decreasing similarity?
#' Default is TRUE.
#' @param ngenes The number of top differentially-regulated (up and down) query genes to use.
#'
#' @return Vector of pearson correlations between query and reference signatures.
#'
query_ref <- function(query, ref, sorted = TRUE, ngenes = 200) {
# use only common genes
query <- query[names(query) %in% row.names(ref)]
# top up/down ngenes
top_ngenes <- utils::head(names(sort(abs(query), TRUE)), ngenes)
query <- query[top_ngenes]
ref <- ref[names(query), ,drop = FALSE]
# pearson correlation
sim <- stats::cor(query, ref, method="pearson")
sim <- structure(c(sim), names=colnames(sim))
if (sorted) {
return(sort(sim, decreasing = TRUE))
} else {
return(sim)
}
}
merge_elist <- function(eset, elist) {
if (is.null(elist$genes)) stop('Raw elist lacks feature names.')
# get eset and elist fdata columns
esetcols <- fData(eset)
elistcols <- elist$genes
# find eset fData column that best matches elist features
best <- c(esetcol=NA, elistcol=NA)
bestf <- 0
for (i in seq_along(elistcols)) {
elistcol <- elistcols[[i]]
# get fraction of fdata column that has a match
matches <- sapply(names(esetcols), function(esetcol) {
sum(elistcol %in% esetcols[, esetcol]) / length(elistcol)
})
# update best
if (max(matches) >= bestf) {
bestf <- max(matches)
best['elistcol'] <- names(elistcols)[i]
best['esetcol'] <- names(matches[which.max(matches)])
}
}
if (bestf > 0.3) {
# merge eset and elist fdata columns
esetcols <- esetcols[!duplicated(esetcols[best['esetcol']]),, drop = FALSE]
elistcols <- merge(elistcols, esetcols, all.x = TRUE, by.x = best['elistcol'], by.y = best['esetcol'], sort = FALSE)
elistcols[elistcols == ""] <- NA
elist$genes <- elistcols
# add best info for illumina sample matching
elist$elistcol <- best[['elistcol']]
elist$esetcol <- best[['esetcol']]
}
elist$genes[] <- lapply(elist$genes, as.character)
return(elist)
}
#' Open raw Illumina microarray files.
#'
#' Helper function to open raw Illumina microarray files in order to check that
#' they are formatted correctly. For details on correct format, please see
#' 'Checking Raw Illumina Data' in vignette.
#'
#' @param gse_names Character vector of Illumina GSE names to open.
#' @param data_dir String specifying directory with GSE folders.
#'
#' @return Character vector of successfully formated Illumina GSE names.
#' @export
#'
#' @examples
#' library(lydata)
#'
#' # Illumina GSE names
#' illum_names <- c("GSE50841", "GSE34817", "GSE29689")
#'
#' # location of raw data
#' data_dir <- system.file("extdata", package = "lydata")
#'
#' # open raw data files with default text editor
#' # open_raw_illum(illum_names)
open_raw_illum <- function (gse_names, data_dir = getwd()) {
out_names <- gse_names
for (i in seq_along(gse_names)) {
# get data paths
gse_dir <- paste(data_dir, gse_names[i], sep = "/")
data_paths <- list.files(gse_dir, pattern = "non.norm.*txt",
full.names = TRUE, ignore.case = TRUE)
data_paths <- c(data_paths, list.files(gse_dir, pattern = ".xls",
full.names = TRUE))
# open data file
for (j in seq_along(data_paths)) system2("xdg-open", data_paths[j])
# check success
success <- tcltk::tk_select.list(choices = c("Yes", "No"),
title = paste(gse_names[i],
"formated successfully?"))
# remove unsuccessful
if (success == "No") out_names <- setdiff(out_names, gse_names[i])
}
return(out_names)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.