Description Usage Arguments Details Value See Also Examples
Imputing log2 ratios using the output of the HMM segmenttation
1 2 | impute.HMM(aCGH.obj, chrominfo = human.chrom.info.Jul03, maxChrom =
23, use.BIC = TRUE)
|
aCGH.obj |
Object of class aCGH. |
chrominfo |
a chromosomal information associated with the mapping of the data |
maxChrom |
Highest chromosome to impute. |
use.BIC |
logical parameter; if true impute missing values based on the Hidden Markov Model selected using Bayesian Information Criterion impute missing data, otherwise use AIC. |
See details in aCGH
discussion.
Computes and returns the imputed log2 ratio matrix of the aCGH object
using the output of the Hidden Markov Model segmentation done by
invoking find.hmm.states
function.
aCGH
, find.hmm.states
, impute.lowess
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | datadir <- system.file(package = "aCGH")
datadir <- paste(datadir, "/examples", sep="")
clones.info <-
read.table(file = file.path(datadir, "clones.info.ex.txt"),
header = TRUE, sep = "\t", quote="", comment.char="")
log2.ratios <-
read.table(file = file.path(datadir, "log2.ratios.ex.txt"),
header = TRUE, sep = "\t", quote="", comment.char="")
ex.acgh <- create.aCGH(log2.ratios, clones.info)
## Imputing the log2 ratios
hmm(ex.acgh) <- find.hmm.states(ex.acgh, aic = TRUE, delta = 1.5)
log2.ratios.imputed(ex.acgh) <- impute.HMM(ex.acgh)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.