R/interact_foreign.R

Defines functions extract_names_from_gene_list build_gene_list_for_pathway run_annotate_vcf_pl run_kmer_frequency_correction run_kmer_frequency_normalization run_bedtools_getfasta run_kmer_frequency_pl check_bedtools check_perl

Documented in build_gene_list_for_pathway extract_names_from_gene_list run_annotate_vcf_pl run_kmer_frequency_correction run_kmer_frequency_normalization

# Copyright © 2014-2019  The YAPSA package contributors
# This file is part of the YAPSA package. The YAPSA package is licenced under
# GPL-3

#' @importFrom GetoptLong qq
#' @importFrom GetoptLong qq.options
#' 
check_perl = function(module = NULL, inc = NULL, perl_bin = "perl") {
  
  op = qq.options("code.pattern")
  qq.options("code.pattern" = "@\\{CODE\\}")
  on.exit(qq.options("code.pattern" = op))
  
  if(is.null(module)) {
    cmd = qq("\"@{perl_bin}\" -v")
  } else if(!is.null(module) && is.null(inc)) {
    cmd = qq("\"@{perl_bin}\" -M@{module} -e \"use @{module}\"")
  } else if(!is.null(module) && !is.null(inc)) {
    cmd = qq("\"@{perl_bin}\" \"-I@{inc}\" -M@{module} -e \"use @{module}\"")
  }
  
  OS = Sys.info()["sysname"]
  if(OS == "Windows") {
    res = system(cmd, ignore.stdout = TRUE, ignore.stderr = TRUE, 
                 show.output.on.console = FALSE)
  } else {
    res = system(cmd, ignore.stdout = TRUE, ignore.stderr = TRUE)
  }
  
  return(ifelse(res, FALSE, TRUE))
}

#' @importFrom GetoptLong qq
#' @importFrom GetoptLong qq.options
#' 
check_bedtools = function(module = NULL, 
                          inc = NULL, 
                          bedtools_bin = "bedtools") {
  
  op = qq.options("code.pattern")
  qq.options("code.pattern" = "@\\{CODE\\}")
  on.exit(qq.options("code.pattern" = op))
  
  if(is.null(module)) {
    cmd = qq("\"@{bedtools_bin}\" --version")
  }
  
  OS = Sys.info()["sysname"]
  if(OS == "Windows") {
    res = system(cmd, ignore.stdout = TRUE, ignore.stderr = TRUE, 
                 show.output.on.console = FALSE)
  } else {
    res = system(cmd, ignore.stdout = TRUE, ignore.stderr = TRUE)
  }
  
  return(ifelse(res, FALSE, TRUE))
}


## example:
## in_fasta <- "/ibios/co02/reference/Reference_1KG/hs37d5.fa"
## in_word_length <- 3
## project_folder <- file.path("/icgc/dkfzlsdf/analysis/hipo/hipo_028",
##                             "somaticSignatures/nucleotide_distrib")
## out_csv <- "kmer_frequencies_in_ref.csv"
## 
run_kmer_frequency_pl <- function(in_fasta,
                                  in_word_length,
                                  project_folder,
                                  out_csv) {
  if(!check_perl()) {
    cat("YAPSA:::run_kmer_frequency_pl::Error:unable to find path to perl")
    return(1)
  }
  package_path <- system.file(package='YAPSA')
  perl_command <- paste0("perl")
  script_command <- file.path(package_path,"foreign","kmer_frequencies.pl")
  script_options_command <- paste0("-r ",in_fasta, " -w ",in_word_length)
  output_command <- paste0("> ",file.path(project_folder,out_csv))
  this_command <- paste(perl_command,script_command,script_options_command,
                        output_command,collapse=" ")
  system(this_command,intern=TRUE)
  return(0)
}

## example:
## in_ref_genome <- "/ibios/co02/reference/Reference_1KG/hs37d5.fa"
## in_target_capture_bed <- file.path("/icgc/ngs_share/assemblies",
##                                    "hg19_GRCh37_1000genomes/targetRegions",
##                                    "Agilent5withUTRs_chr.bed.gz")
## project_folder <- file.path("/icgc/dkfzlsdf/analysis/hipo/hipo_028",
##                             "somaticSignatures/nucleotide_distrib")
## out_target_capture_fasta <- "hs37d5_Agilent5withUTR_targetCapture.fa"
## 
run_bedtools_getfasta <- function(in_ref_genome,in_target_capture_bed,
                                  project_folder,out_target_capture_fasta) {
  if(!check_bedtools()) {
    cat("YAPSA:::run_bedtools_getfasta::Error:unable to find path to bedtools")
    return(1)
  }
  bedtools_command <- "bedtools getfasta"
  bedtools_options_command <- 
    paste0("-fi ",in_ref_genome, " -bed ",in_target_capture_bed,
           " -fo ",file.path(project_folder,out_target_capture_fasta))
  this_command <- paste(bedtools_command,bedtools_options_command,collapse=" ")
  system(this_command)
  return(0)
}


#' Provide normalized correction factors for kmer content
#'
#' This function is analogous to
#' \code{\link[SomaticSignatures]{normalizeMotifs}}. If an analysis of
#' mutational signatures is performed on e.g. Whole Exome Sequencing (WES) data,
#' the signatures and exposures have to be adapted to the potentially different
#' kmer (trinucleotide) content of the target capture. The present function
#' takes as arguments paths to the used reference genome and target capture
#' file. It the extracts the sequence of the target capture by calling
#' \code{bedtools getfasta} on the system command prompt.
#' \code{run_kmer_frequency_normalization} then calls a custom made perl script
#' \code{kmer_frequencies.pl} also included in this package to count the
#' occurences of the tripletts in both the whole reference genome and the
#' created target capture sequence. These counts are used for normalization as
#' in \code{\link[SomaticSignatures]{normalizeMotifs}}. Note that
#' \code{\link[SomaticSignatures]{kmerFrequency}} provides a solution to
#' approximate kmer frequencies by random sampling. As opposed to that approach,
#' the function described here deterministically counts all occurences of the
#' kmers in the respective genome.
#'
#' @param in_ref_genome_fasta Path to the reference genome fasta file used.
#' @param in_target_capture_bed Path to a bed file containing the information on
#'   the used target capture. May also be a compressed bed.
#' @param in_word_length Integer number defining the length of the features or
#'   motifs, e.g. 3 for tripletts or 5 for pentamers
#' @param project_folder Path where the created files, especially the fasta file
#'   with the sequence of the target capture and the count matrices, can be
#'   stored.
#' @param in_verbose Verbose if \code{in_verbose=1}
#'
#' @return A numeric vector with correction factors
#'
#' @examples
#'  NULL
#'
#' @seealso \code{\link[SomaticSignatures]{normalizeMotifs}}
#'
#' @export
#' 
run_kmer_frequency_normalization <- function(in_ref_genome_fasta,
                                             in_target_capture_bed,
                                             in_word_length,
                                             project_folder,
                                             in_verbose=1) {
  target_capture_fasta <- "hs37d5_Agilent5withUTR_targetCapture.fa"
  target_capture_kmer_counts_file <- "kmer_frequencies_in_targetCapture.csv"
  reference_genome_kmer_counts_file <- "kmer_frequencies_in_ref.csv"
  if(!file.exists(file.path(project_folder,
                            reference_genome_kmer_counts_file))){
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "reference_genome_kmer_counts_file doesn't exist yet. ",
          "Create first.\n")
    }
    run_kmer_frequency_pl(in_ref_genome_fasta,in_word_length,project_folder,
                          reference_genome_kmer_counts_file)
  } else {
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "reference_genome_kmer_counts_file already exists.\n");}
  }
  if(!file.exists(file.path(project_folder,target_capture_kmer_counts_file))){
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "target_capture_kmer_counts_file doesn't exist yet. ",
          "Create first.\n")
    }
    if(!file.exists(file.path(project_folder,target_capture_fasta))) {
      if(in_verbose==1) {
        cat("\nYAPS:::run_kmer_frequency_normalization::",
            "target_capture_fasta doesn't exist yet. Create first.\n")
      }
      run_bedtools_getfasta(in_ref_genome_fasta,in_target_capture_bed,
                            project_folder,target_capture_fasta)
    } else {
      if(in_verbose==1) {
        cat("\nYAPS:::run_kmer_frequency_normalization::target_capture_fasta",
            " already exists.\n")
      }    
    }
    run_kmer_frequency_pl(file.path(project_folder,target_capture_fasta),
                          in_word_length,project_folder,
                          target_capture_kmer_counts_file)
  } else {
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "target_capture_kmer_counts_file already exists.\n")
    }    
  }
  if(in_verbose==1) {
    cat("\nYAPS:::run_kmer_frequency_normalization::Now read counts into data",
        " frames...\n");}
  reference_genome_kmer_frequency_df <- 
    read.csv(file.path(project_folder,reference_genome_kmer_counts_file),
             header=FALSE,sep="\t")
  names(reference_genome_kmer_frequency_df) <- c("triplet","count")
  reference_genome_total_count <- 
    sum(as.numeric(reference_genome_kmer_frequency_df$count))
  reference_genome_kmer_frequency_df$rel_counts <-
    as.numeric(reference_genome_kmer_frequency_df$count) / 
    reference_genome_total_count
  target_capture_kmer_frequency_df <- 
    read.csv(file.path(project_folder, target_capture_kmer_counts_file),
             header=FALSE, sep="\t")
  names(target_capture_kmer_frequency_df) <- c("triplet","count")
  target_capture_total_count <- 
    sum(as.numeric(target_capture_kmer_frequency_df$count))
  target_capture_kmer_frequency_df$rel_counts <- 
    as.numeric(target_capture_kmer_frequency_df$count) / 
    target_capture_total_count
  norms <- reference_genome_kmer_frequency_df$rel_counts / 
    target_capture_kmer_frequency_df$rel_counts
  names(norms) <- reference_genome_kmer_frequency_df$triplet
  return(norms)
}


#' Provide comprehensive correction factors for kmer content
#'
#' This function is analogous to
#' \code{\link[SomaticSignatures]{normalizeMotifs}}. If an analysis of
#' mutational signatures is performed on e.g. Whole Exome Sequencing (WES) data,
#' the signatures and exposures have to be adapted to the potentially different
#' kmer (trinucleotide) content of the target capture. The present function
#' takes as arguments paths to the used reference genome and target capture
#' file. It the extracts the sequence of the target capture by calling
#' \code{bedtools getfasta} on the system command prompt.
#' \code{run_kmer_frequency_normalization} then calls a custom made perl script
#' \code{kmer_frequencies.pl} also included in this package to count the
#' occurences of the tripletts in both the whole reference genome and the
#' created target capture sequence. These counts are used for normalization as
#' in \code{\link[SomaticSignatures]{normalizeMotifs}}. Note that
#' \code{\link[SomaticSignatures]{kmerFrequency}} provides a solution to
#' approximate kmer frequencies by random sampling. As opposed to that approach,
#' the function described here deterministically counts all occurences of the
#' kmers in the respective genome.
#'
#' @param in_ref_genome_fasta Path to the reference genome fasta file used.
#' @param in_target_capture_bed Path to a bed file containing the information on
#'   the used target capture. May also be a compressed bed.
#' @param in_word_length Integer number defining the length of the features or
#'   motifs, e.g. 3 for tripletts or 5 for pentamers
#' @param project_folder Path where the created files, especially the fasta file
#'   with the sequence of the target capture and the count matrices, can be
#'   stored.
#' @param target_capture_fasta Name of the fasta file of the target capture to
#'   be created if not yet existent.
#' @param in_verbose Verbose if \code{in_verbose=1}
#'
#' @return A list with 2 entries: \itemize{ \item \code{rel_cor}: The correction
#' factors after normalization as in
#' \code{\link{run_kmer_frequency_normalization}} \item \code{abs_cor}: The
#' correction factors without normalization. }
#'
#' @examples
#'  NULL
#'
#' @seealso \code{\link[SomaticSignatures]{normalizeMotifs}}
#'
#' @export
#' 
run_kmer_frequency_correction <- 
  function(in_ref_genome_fasta, in_target_capture_bed, in_word_length,
           project_folder, target_capture_fasta="targetCapture.fa",
           in_verbose=1) {
  target_capture_kmer_counts_file <- "kmer_frequencies_in_targetCapture.csv"
  reference_genome_kmer_counts_file <- "kmer_frequencies_in_ref.csv"
  dir.create(project_folder,recursive=TRUE)
  if(!file.exists(file.path(project_folder,
                            reference_genome_kmer_counts_file))){
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "reference_genome_kmer_counts_file doesn't exist yet. ",
          "Create first.\n")
    }
    run_kmer_frequency_pl(in_ref_genome_fasta,in_word_length,project_folder,
                          reference_genome_kmer_counts_file)
  } else {
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "reference_genome_kmer_counts_file already exists.\n")
    }
  }
  if(!file.exists(file.path(project_folder,target_capture_kmer_counts_file))){
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "target_capture_kmer_counts_file doesn't exist yet. ",
          "Create first.\n")
    }
    if(!file.exists(file.path(project_folder,target_capture_fasta))) {
      if(in_verbose==1) {
        cat("\nYAPS:::run_kmer_frequency_normalization::",
            "target_capture_fasta doesn't exist yet. Create first.\n")
      }
      run_bedtools_getfasta(in_ref_genome_fasta,in_target_capture_bed,
                            project_folder,target_capture_fasta)
    } else {
      if(in_verbose==1) {
        cat("\nYAPS:::run_kmer_frequency_normalization::",
            "target_capture_fasta already exists.\n")
      }    
    }
    run_kmer_frequency_pl(file.path(project_folder,target_capture_fasta),
                          in_word_length,project_folder,
                          target_capture_kmer_counts_file)
  } else {
    if(in_verbose==1) {
      cat("\nYAPS:::run_kmer_frequency_normalization::",
          "target_capture_kmer_counts_file already exists.\n")
    }    
  }
  if(in_verbose==1) {
    cat("\nYAPS:::run_kmer_frequency_normalization::Now read counts into ",
        "data frames...\n")
  }
  reference_genome_kmer_frequency_df <- 
    read.csv(file.path(project_folder,reference_genome_kmer_counts_file),
             header=FALSE,sep="\t")
  names(reference_genome_kmer_frequency_df) <- c("triplet","count")
  reference_genome_total_count <- 
    sum(as.numeric(reference_genome_kmer_frequency_df$count))
  reference_genome_kmer_frequency_df$rel_counts <- 
    as.numeric(reference_genome_kmer_frequency_df$count) / 
    reference_genome_total_count
  target_capture_kmer_frequency_df <- 
    read.csv(file.path(project_folder,target_capture_kmer_counts_file),
             header=FALSE,sep="\t")
  names(target_capture_kmer_frequency_df) <- c("triplet","count")
  target_capture_total_count <- 
    sum(as.numeric(target_capture_kmer_frequency_df$count))
  target_capture_kmer_frequency_df$rel_counts <- 
    as.numeric(target_capture_kmer_frequency_df$count) / 
    target_capture_total_count
  rel_norms <- 
    reference_genome_kmer_frequency_df$rel_counts / 
    target_capture_kmer_frequency_df$rel_counts
  names(rel_norms) <- reference_genome_kmer_frequency_df$triplet
  abs_norms <- reference_genome_kmer_frequency_df$count / 
    target_capture_kmer_frequency_df$count
  names(abs_norms) <- reference_genome_kmer_frequency_df$triplet
  #out_df <- data.frame(rel_cor=rel_norms,abs_cor=abs_norms)
  #rownames(out_df) <- reference_genome_kmer_frequency_df$triplet
  #return(out_df)
  out_list <- list(rel_cor=rel_norms,abs_cor=abs_norms)
  return(out_list)
}


#' Wrapper function to annotate addition information
#'
#' Wrapper function to the perl script annotate_vcf.pl which annotates data of a
#' track stored in file_B (may be different formats) to called variants stored
#' in a vcf-like file_A.
#'
#' @param in_data_file Path to the input vcf-like file to be annotated
#' @param in_anno_track_file Path to the input file containing the annotation
#'   track
#' @param in_new_column_name String indicating the name of the column to be
#'   created for annotation.
#' @param out_file Path where the created files can be stored.
#' @param in_data_file_type \code{custom} for vcf-like
#' @param in_anno_track_file_type Type of the file \code{in_anno_track_file}
#'   containing the annotation track.
#' @param in_data_CHROM.field String indicating which column of
#'   \code{in_data_file} contains the chromosome information.
#' @param in_data_POS.field String indicating which column of
#'   \code{in_data_file} contains the position information.
#' @param in_data_END.field String indicating which column of
#'   \code{in_data_file} contains the end information if regions are considered.
#'
#' @return Return zero if no problems occur.
#'
#' @examples
#'  NULL
#'
#' @export
#' 
run_annotate_vcf_pl <- function(in_data_file,
                                in_anno_track_file,
                                in_new_column_name,
                                out_file,
                                in_data_file_type="custom",
                                in_anno_track_file_type="bed",
                                in_data_CHROM.field="CHROM",
                                in_data_POS.field="POS",
                                in_data_END.field="POS") {
  if(!check_perl()) {
    cat("YAPSA:::run_annotate_vcf_pl::Error:unable to find path to perl")
    return(1)
  }
  package_path <- system.file(package='YAPSA')
  perl_command <- paste0("perl")
  script_command <- file.path(package_path,"foreign","annotate_vcf.pl")
  script_options_command <- paste0("-a ",in_data_file,
                                   " --aFileType=",in_data_file_type,
                                   " --aChromColumn ",in_data_CHROM.field,
                                   " --aPosColumn ",in_data_POS.field,
                                   " --aEndColumn ",in_data_END.field,
                                   " -b ",in_anno_track_file,
                                   " --bFileType=",in_anno_track_file_type,
                                   " --columnName ",in_new_column_name)
  output_command <- paste0("> ",file.path(out_file))
  this_command <- paste(perl_command,script_command,script_options_command,
                        output_command,collapse=" ")
  system(this_command,intern=TRUE)
  return(0)
}


#' Build a gene list for a given pathway name
#' 
#' @param in_string
#'  Name or description of the pathway
#' @param in_organism
#'  Name of the taxon to be searched in
#' 
#' @return A character vector of gene names
#' 
#' @examples
#'    species <- "hsa"
#'    gene_lists_meta_df <- data.frame(
#'      name=c("BER","NHEJ","MMR"),
#'      explanation=c("base excision repair",
#'                    "non homologous end joining",
#'                    "mismatch repair"))
#'    number_of_pathways <- dim(gene_lists_meta_df)[1]
#'    gene_lists_list <- list()
#'    for (i in seq_len(number_of_pathways)) {
#'      temp_list <- 
#'        build_gene_list_for_pathway(gene_lists_meta_df$explanation[i],
#'                                    species)
#'      gene_lists_list <- c(gene_lists_list,list(temp_list))
#'    }
#'    gene_lists_list
#'    
#' @seealso \code{\link[KEGGREST]{keggLink}}
#' @seealso \code{\link[KEGGREST]{keggFind}}
#' @seealso \code{\link{extract_names_from_gene_list}}
#' 
#' @importFrom KEGGREST keggFind
#' @importFrom KEGGREST keggLink
#' @export
#' 
build_gene_list_for_pathway <- function(in_string,in_organism) {
  my_pathway <- keggFind("pathway",in_string)
  my_name <- gsub("map",in_organism,names(my_pathway))
  KEGG_gene_list <- keggLink(in_organism,my_name)
  out_gene_list <- c()
  for (i in seq_len(length(KEGG_gene_list))) {
    out_gene_list[i] <- extract_names_from_gene_list(KEGG_gene_list,i)
  }  
  return(out_gene_list)
}


#' Return gene names from gene lists
#'
#' @param in_KEGG_gene_list Gene list to extract names from
#' @param l Index of the gene to be extracted
#'
#' @return The gene name.
#'
#' @examples
#'  NULL
#'
#' @seealso \code{\link[KEGGREST]{keggGet}}
#' @seealso \code{\link{build_gene_list_for_pathway}}
#'
#' @importFrom KEGGREST keggGet
#' @export
#' 
extract_names_from_gene_list <- function(in_KEGG_gene_list,l) {
  temp_gene <- keggGet(in_KEGG_gene_list[l])[[1]]
  temp_gene_name <- strsplit(temp_gene$NAME,", ")[[1]][1]  
  return(temp_gene_name)
}

Try the YAPSA package in your browser

Any scripts or data that you put into this service are public.

YAPSA documentation built on Nov. 8, 2020, 4:59 p.m.