Description Usage Arguments Value Author(s) Examples
Function that computes weighted distances between a list of bioDistclass objects.
1 |
referenceFeatures |
The set of features that weighted distance is computed between. |
bioDistList |
A list of bioDistclass objects. All the objects must contain the set of features selected. |
weights |
A matrix where the number of columns equals the number of elements included in the bioDistList list. |
Returns a list of bioDistWclass objects. Each element in the list returns the weighted distance associated to each row in the "weights" matrix.
David Gomez-Cabrero
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | data(STATegRa_S1)
data(STATegRa_S2)
require(Biobase)
# Truncate data for brevity
Block1 <- Block1[1:100,]
Block2 <- Block2[1:100,]
## Create ExpressionSets
mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
## Create the bioMap
map.gene.miRNA<-bioMap(name = "Symbol-miRNA",
metadata = list(type_v1="Gene",type_v2="miRNA",
source_database="targetscan.Hs.eg.db",
data_extraction="July2014"),
map=mapdata)
# Create Gene-gene distance computed through miRNA data
bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
reference = "Var1",
mapping = map.gene.miRNA,
surrogateData = miRNA.ds, ### miRNA data
referenceData = mRNA.ds, ### mRNA data
maxitems=2,
selectionRule="sd",
expfac=NULL,
aggregation = "sum",
distance = "spearman",
noMappingDist = 0,
filtering = NULL,
name = "mRNAbymiRNA")
# Create Gene-gene distance through mRNA data
bioDistmRNA<-new("bioDistclass",
name = "mRNAbymRNA",
distance = cor(t(exprs(mRNA.ds)),method="spearman"),
map.name = "id",
map.metadata = list(),
params = list())
###### Generation of the list of Surrogated distances.
bioDistList<-list(bioDistmRNA,bioDistmiRNA)
sample.weights<-matrix(0,4,2)
sample.weights[,1]<-c(0,0.33,0.67,1)
sample.weights[,2]<-c(1,0.67,0.33,0)
###### Generation of the list of bioDistWclass objects.
bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
bioDistList = bioDistList,
weights=sample.weights)
###### Plot of distances.
bioDistWPlot(referenceFeatures = rownames(Block1) ,
listDistW = bioDistWList,
method.cor="spearman")
###### Computing the matrix of features/distances associated.
fm<-bioDistFeature(Feature = rownames(Block1)[1] ,
listDistW = bioDistWList,
threshold.cor=0.7)
bioDistFeaturePlot(data=fm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.