Description Usage Arguments Value Author(s) See Also Examples
The VSE method tests the enrichment of an AVS for a particular trait in a genomic annotation.
1 2 3 |
object |
an object. When this function is implemented as the S4 method of class
|
annotation |
a data frame with genomic annotations listing chromosome coordinates to which a particular property or function has been attributed. It should include the following columns: <CHROM>, <START>, <END> and <ID>. The <ID> column can be any genomic identifier, while values in <CHROM> should be listed in ['chr1', 'chr2', 'chr3' ..., 'chrX']. Both <START> and <END> columns correspond to chromosome positions mapped to the human genome assembly used to build the AVS object. |
maxgap |
a single integer value specifying the max distant (kb) between the AVS and the annotation used to compute the enrichment analysis. |
pValueCutoff |
a single numeric value specifying the cutoff for p-values considered significant. |
pAdjustMethod |
a single character value specifying the p-value adjustment method to be used (see 'p.adjust' for details). |
boxcox |
a single logical value specifying to use Box-Cox procedure to find a
transformation of the null that approaches normality (when boxcox=TRUE) or not
(when boxcox=FALSE). See |
lab |
a single character value specifying a name for the annotation dataset (this option is overrided if 'glist' is used). |
glist |
an optional list with character vectors mapped to the 'annotation' data via <ID> column. This option can be used to run a batch mode for gene sets and regulons. |
minSize |
if 'glist' is provided, this argument is a single integer or numeric value specifying the minimum number of elements for each gene set in the 'glist'. Gene sets with fewer than this number are removed from the analysis. |
verbose |
a single logical value specifying to display detailed messages (when verbose=TRUE) or not (when verbose=FALSE). |
a data frame in the slot "results", see 'what' options in
avs.get
.
Mauro Castro
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | ## Not run:
# This example requires the RTNdata package! (currently available under request)
library(RTNdata.LDHapMapRel27.hg18)
library(Fletcher2013b)
library(TxDb.Hsapiens.UCSC.hg18.knownGene)
##################################################
### Build AVS and random AVSs (mapped to hg18)
##################################################
#--- step 1: load 'risk SNPs' data (e.g. BCa risk SNPs from the GWAS catalog)
data(bcarisk, package = "RTNdata.LDHapMapRel27.hg18")
#--- step 2: build an AVS and 1000 matched random AVSs for the input 'risk SNPs'
bcavs <- avs.preprocess.LDHapMapRel27.hg18(bcarisk, nrand=1000)
##################################################
### Example of VSE analysis for ERa and FOXA1
### cistromes (one genomic annotation each time)
##################################################
#--- step 1: load a precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")
#--- step 2: load cistrome data from the Fletcher2013b package
#NOTE: Fletcher2013b is a large data package, but only two 'bed files'
#are used to illustrate this analysis (ESR1bdsites and FOXA1bdsites).
#these bed files provide ERa and FOXA1 binding sites mapped by
#ChIP-seq experiments
data(miscellaneous)
#--- step 3: run the avs.vse pipeline
bcavs <- avs.vse(bcavs, annotation=ESR1bdsites$bdsites,
pValueCutoff=0.001, lab="ERa")
bcavs <- avs.vse(bcavs, annotation=FOXA1bdsites$bdsites,
pValueCutoff=0.001, lab="FOXA1")
#--- step 4: generate the VSE plots
avs.plot2(bcavs,"vse",height=2.2)
##################################################
### Example of VSE analysis for sets of genomic
### annotations (e.g. regulons, gene sets, etc.)
##################################################
#--- step 1: load the precomputed AVS (same 'bcavs' object as above!)
data(bcavs, package="RTNdata.LDHapMapRel27.hg18")
#--- step 2: load genomic annotation for all genes
genemap <- as.data.frame(genes(TxDb.Hsapiens.UCSC.hg18.knownGene))
genemap <- genemap[,c("seqnames","start","end","gene_id")]
colnames(genemap) <- c("CHROM","START","END","ID")
#--- step 3: load a TNI object, or any other source of regulons (e.g. gene sets)
#--- and prepare a gene set list
#--- (gene ids should be the same as in the 'genemap' object)
data("rtni1st")
glist <- tni.get(rtni1st,what="refregulons",idkey="ENTREZ")
glist <- glist[ c("FOXA1","GATA3","ESR1") ] #reduce the list for demonstration!
#--- step 4: run the avs.vse pipeline
bcavs<-avs.vse(bcavs, annotation=genemap, glist=glist, pValueCutoff=0.05)
#--- step 5: generate the VSE plots
avs.plot2(bcavs,"vse",height=2.5)
### NOTE REGARDING THIS EXAMPLE ####
#- This example is for demonstration purposes only;
#- we recommend using the EVSE/eQTL approach when analysing genes/regulons.
#- Also, the AVS object here is not the same as the one used in the study that
#- extended the method (doi:10.1038/ng.3458), so the results are not comparable;
#- (here fewer risk SNPs are considered, and without the eQTL step).
####################################
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.